O1O: Grouping of Known Classes to Identify Unknown Objects as Odd-One-Out
- URL: http://arxiv.org/abs/2410.07514v1
- Date: Thu, 10 Oct 2024 01:08:04 GMT
- Title: O1O: Grouping of Known Classes to Identify Unknown Objects as Odd-One-Out
- Authors: Mısra Yavuz, Fatma Güney,
- Abstract summary: Current object detection methods rely on approximate supervision with pseudo-labels corresponding to candidate locations of objects.
We find that geometric cues improve unknown recall.
By identifying similarities between classes within a superclass, we can identify unknown classes through an odd-one-out scoring mechanism.
- Score: 3.637162892228131
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Object detection methods trained on a fixed set of known classes struggle to detect objects of unknown classes in the open-world setting. Current fixes involve adding approximate supervision with pseudo-labels corresponding to candidate locations of objects, typically obtained in a class-agnostic manner. While previous approaches mainly rely on the appearance of objects, we find that geometric cues improve unknown recall. Although additional supervision from pseudo-labels helps to detect unknown objects, it also introduces confusion for known classes. We observed a notable decline in the model's performance for detecting known objects in the presence of noisy pseudo-labels. Drawing inspiration from studies on human cognition, we propose to group known classes into superclasses. By identifying similarities between classes within a superclass, we can identify unknown classes through an odd-one-out scoring mechanism. Our experiments on open-world detection benchmarks demonstrate significant improvements in unknown recall, consistently across all tasks. Crucially, we achieve this without compromising known performance, thanks to better partitioning of the feature space with superclasses.
Related papers
- Unsupervised Recognition of Unknown Objects for Open-World Object
Detection [28.787586991713535]
Open-World Object Detection (OWOD) extends object detection problem to a realistic and dynamic scenario.
Current OWOD models, such as ORE and OW-DETR, focus on pseudo-labeling regions with high objectness scores as unknowns.
This paper proposes a novel approach that learns an unsupervised discriminative model to recognize true unknown objects.
arXiv Detail & Related papers (2023-08-31T08:17:29Z) - Open World DETR: Transformer based Open World Object Detection [60.64535309016623]
We propose a two-stage training approach named Open World DETR for open world object detection based on Deformable DETR.
We fine-tune the class-specific components of the model with a multi-view self-labeling strategy and a consistency constraint.
Our proposed method outperforms other state-of-the-art open world object detection methods by a large margin.
arXiv Detail & Related papers (2022-12-06T13:39:30Z) - Detecting the unknown in Object Detection [20.84221126313118]
We propose a novel training strategy, called UNKAD, able to predict unknown objects without requiring any annotation.
UNKAD first identifies and pseudo-labels unknown objects and then uses the pseudo-annotations to train an additional unknown class.
While UNKAD can directly detect unknown objects, we further combine it with previous unknown detection techniques, showing that it improves their performance at no costs.
arXiv Detail & Related papers (2022-08-24T16:27:38Z) - Towards Open-Set Object Detection and Discovery [38.81806249664884]
We present a new task, namely Open-Set Object Detection and Discovery (OSODD)
We propose a two-stage method that first uses an open-set object detector to predict both known and unknown objects.
Then, we study the representation of predicted objects in an unsupervised manner and discover new categories from the set of unknown objects.
arXiv Detail & Related papers (2022-04-12T08:07:01Z) - Contrastive Object Detection Using Knowledge Graph Embeddings [72.17159795485915]
We compare the error statistics of the class embeddings learned from a one-hot approach with semantically structured embeddings from natural language processing or knowledge graphs.
We propose a knowledge-embedded design for keypoint-based and transformer-based object detection architectures.
arXiv Detail & Related papers (2021-12-21T17:10:21Z) - Learning to Detect Instance-level Salient Objects Using Complementary
Image Labels [55.049347205603304]
We present the first weakly-supervised approach to the salient instance detection problem.
We propose a novel weakly-supervised network with three branches: a Saliency Detection Branch leveraging class consistency information to locate candidate objects; a Boundary Detection Branch exploiting class discrepancy information to delineate object boundaries; and a Centroid Detection Branch using subitizing information to detect salient instance centroids.
arXiv Detail & Related papers (2021-11-19T10:15:22Z) - Objects in Semantic Topology [36.297624587122506]
A qualified open-world object detector can not only identify objects of known categories, but also discover unknown objects.
We provide a unified perspective: Semantic Topology.
Experiments demonstrate that semantic topology, either randomly-generated or derived from a well-trained language model, could outperform the current state-of-the-art open-world object detectors.
arXiv Detail & Related papers (2021-10-06T12:15:30Z) - Open-Set Representation Learning through Combinatorial Embedding [62.05670732352456]
We are interested in identifying novel concepts in a dataset through representation learning based on the examples in both labeled and unlabeled classes.
We propose a learning approach, which naturally clusters examples in unseen classes using the compositional knowledge given by multiple supervised meta-classifiers on heterogeneous label spaces.
The proposed algorithm discovers novel concepts via a joint optimization of enhancing the discrimitiveness of unseen classes as well as learning the representations of known classes generalizable to novel ones.
arXiv Detail & Related papers (2021-06-29T11:51:57Z) - Towards Open World Object Detection [68.79678648726416]
ORE: Open World Object Detector is based on contrastive clustering and energy based unknown identification.
We find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting.
arXiv Detail & Related papers (2021-03-03T18:58:18Z) - Weakly-supervised Salient Instance Detection [65.0408760733005]
We present the first weakly-supervised approach to the salient instance detection problem.
We propose a novel weakly-supervised network with three branches: a Saliency Detection Branch leveraging class consistency information to locate candidate objects; a Boundary Detection Branch exploiting class discrepancy information to delineate object boundaries; and a Centroid Detection Branch using subitizing information to detect salient instance centroids.
arXiv Detail & Related papers (2020-09-29T09:47:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.