論文の概要: CountMamba: Exploring Multi-directional Selective State-Space Models for Plant Counting
- arxiv url: http://arxiv.org/abs/2410.07528v1
- Date: Thu, 10 Oct 2024 01:52:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 16:36:31.301237
- Title: CountMamba: Exploring Multi-directional Selective State-Space Models for Plant Counting
- Title(参考訳): CountMamba: プラントカウントのための多方向選択状態空間モデル
- Authors: Hulingxiao He, Yaqi Zhang, Jinglin Xu, Yuxin Peng,
- Abstract要約: 植物カウントは、種子の育種、発芽、栽培、受精、受粉収量の推定、収穫など、農業のあらゆる段階において不可欠である。
逐次走査法により高分解能画像中の被写体を数えることに着想を得て, 状態空間モデル(SSM)を用いて植物計測タスクを処理し, 結果を生成する可能性を探る。
我々は,複数のカウント専門家が同時に様々な方向からスキャンできるように,CountMambaという新しいカウント手法を提案する。
- 参考スコア(独自算出の注目度): 33.41299696340091
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Plant counting is essential in every stage of agriculture, including seed breeding, germination, cultivation, fertilization, pollination yield estimation, and harvesting. Inspired by the fact that humans count objects in high-resolution images by sequential scanning, we explore the potential of handling plant counting tasks via state space models (SSMs) for generating counting results. In this paper, we propose a new counting approach named CountMamba that constructs multiple counting experts to scan from various directions simultaneously. Specifically, we design a Multi-directional State-Space Group to process the image patch sequences in multiple orders and aim to simulate different counting experts. We also design Global-Local Adaptive Fusion to adaptively aggregate global features extracted from multiple directions and local features extracted from the CNN branch in a sample-wise manner. Extensive experiments demonstrate that the proposed CountMamba performs competitively on various plant counting tasks, including maize tassels, wheat ears, and sorghum head counting.
- Abstract(参考訳): 植物カウントは、種子の育種、発芽、栽培、受精、受粉収量の推定、収穫など、農業のあらゆる段階において不可欠である。
逐次走査法により高分解能画像中の被写体を数えることに着想を得て, 状態空間モデル(SSM)を用いて植物計測タスクを処理し, 結果を生成する可能性を探る。
本稿では,複数のカウント専門家が同時に様々な方向からスキャンできるCountMambaという新しいカウント手法を提案する。
具体的には、複数の順序で画像パッチシーケンスを処理し、異なるカウントの専門家をシミュレートするために、多方向状態空間グループを設計する。
また,複数の方向から抽出したグローバルな特徴と,CNNブランチから抽出した局所的特徴を標本的に適応的に集約するグローバル局所適応融合を設計する。
大規模な実験により、提案されたCountMambaは、トウモロコシの房、小麦の耳、ソルガムの頭部計数など、様々な植物計数タスクで競争力を発揮することが示された。
関連論文リスト
- Joint Depth Prediction and Semantic Segmentation with Multi-View SAM [59.99496827912684]
我々は,Segment Anything Model(SAM)のリッチなセマンティック特徴を利用した深度予測のためのマルチビューステレオ(MVS)手法を提案する。
この拡張深度予測は、Transformerベースのセマンティックセグメンテーションデコーダのプロンプトとして役立ちます。
論文 参考訳(メタデータ) (2023-10-31T20:15:40Z) - Counting Like Human: Anthropoid Crowd Counting on Modeling the
Similarity of Objects [92.80955339180119]
メインストリームの群衆計数法は 密度マップを補強して 計数結果を得るために統合する。
これに触発された我々は,合理的かつ人為的な集団カウントフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-02T07:00:53Z) - Automatic counting of mounds on UAV images: combining instance
segmentation and patch-level correction [15.912811733537668]
無人航空機(UAV)イメージングとコンピュータビジョンの進歩を生かした新しい枠組みを提案する。
我々は,深層学習アルゴリズムに基づく画像認識手法を用いて,画素ベースセグメンテーションによる複数物体検出を行う。
局所的ブロック特性に基づいて最終マウンド数を予測する機械学習推定関数を用いる。
論文 参考訳(メタデータ) (2022-09-06T16:02:38Z) - Fractional Vegetation Cover Estimation using Hough Lines and Linear
Iterative Clustering [3.1654720243958128]
本稿では,ある地域に存在する植生被覆量を決定するために,新しい画像処理アルゴリズムを提案する。
提案アルゴリズムは,植生被覆推定のための信頼度の高いダウベンミア法からインスピレーションを得ている。
植物の成長に関する重要な洞察を、一定間隔で取得した画像を繰り返すと、その分析が引き起こされる。
論文 参考訳(メタデータ) (2022-04-30T23:33:31Z) - WheatNet: A Lightweight Convolutional Neural Network for High-throughput
Image-based Wheat Head Detection and Counting [12.735055892742647]
本研究では,小麦頭数を正確にかつ効率的に計算し,意思決定のためのリアルタイムデータ収集を支援する新しいディープラーニングフレームワークを提案する。
モデルコムギ網とよばれ,小麦畑の幅広い環境条件において,我々のアプローチが頑健かつ正確であることを実証する。
提案手法は, 小麦頭部計数タスクにおけるMAEとRMSEの3.85と5.19をそれぞれ達成し, 他の最先端手法に比べてパラメータが有意に少ない。
論文 参考訳(メタデータ) (2021-03-17T02:38:58Z) - Deep Multi-view Image Fusion for Soybean Yield Estimation in Breeding
Applications Deep Multi-view Image Fusion for Soybean Yield Estimation in
Breeding Applications [7.450586438835518]
本研究の目的は,ダイズポッドカウントに適応する機械学習(ML)アプローチを開発することである。
ディープラーニングアーキテクチャを用いた多視点画像に基づく収量推定フレームワークを開発した。
以上の結果から,MLモデルが時間と労力を大幅に削減して繁殖決定を下すことが示唆された。
論文 参考訳(メタデータ) (2020-11-13T20:37:04Z) - Unsupervised Domain Adaptation For Plant Organ Counting [12.424350934766704]
イメージベース植物表現型解析のための植物器官の計数はこのカテゴリに該当する。
本稿では,密度マップ推定の領域適応のための領域適応型学習手法を提案する。
論文 参考訳(メタデータ) (2020-09-02T13:57:09Z) - Counting from Sky: A Large-scale Dataset for Remote Sensing Object
Counting and A Benchmark Method [52.182698295053264]
リモートセンシング画像から高密度物体をカウントすることに興味がある。自然界における物体のカウントと比較すると、このタスクは、大規模変動、複雑な乱れ背景、配向仲裁といった要因において困難である。
これらの課題に対処するために,我々はまず,4つの重要な地理的対象を含むリモートセンシング画像を用いた大規模オブジェクトカウントデータセットを構築した。
次に、入力画像の密度マップを生成する新しいニューラルネットワークを設計することで、データセットをベンチマークする。
論文 参考訳(メタデータ) (2020-08-28T03:47:49Z) - Semi-Supervised Crowd Counting via Self-Training on Surrogate Tasks [50.78037828213118]
本稿では,機能学習の観点から,半教師付き群集カウント問題に取り組む。
本稿では,2つの革新的なコンポーネント上に構築された,新しい半教師付き群集カウント手法を提案する。
論文 参考訳(メタデータ) (2020-07-07T05:30:53Z) - CNN-based Density Estimation and Crowd Counting: A Survey [65.06491415951193]
本稿では,主にCNNに基づく密度マップ推定法において,群集数モデルについて包括的に検討する。
評価指標から, 観客数データセットで上位3人のパフォーマーを選択した。
我々は、今後のクラウドカウントの展開について、合理的な推測と予測を行うことを期待する。
論文 参考訳(メタデータ) (2020-03-28T13:17:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。