CountMamba: Exploring Multi-directional Selective State-Space Models for Plant Counting
- URL: http://arxiv.org/abs/2410.07528v1
- Date: Thu, 10 Oct 2024 01:52:57 GMT
- Title: CountMamba: Exploring Multi-directional Selective State-Space Models for Plant Counting
- Authors: Hulingxiao He, Yaqi Zhang, Jinglin Xu, Yuxin Peng,
- Abstract summary: Plant counting is essential in every stage of agriculture, including seed breeding, germination, cultivation, fertilization, pollination yield estimation, and harvesting.
Inspired by the fact that humans count objects in high-resolution images by sequential scanning, we explore the potential of handling plant counting tasks via state space models (SSMs) for generating counting results.
We propose a new counting approach named CountMamba that constructs multiple counting experts to scan from various directions simultaneously.
- Score: 33.41299696340091
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Plant counting is essential in every stage of agriculture, including seed breeding, germination, cultivation, fertilization, pollination yield estimation, and harvesting. Inspired by the fact that humans count objects in high-resolution images by sequential scanning, we explore the potential of handling plant counting tasks via state space models (SSMs) for generating counting results. In this paper, we propose a new counting approach named CountMamba that constructs multiple counting experts to scan from various directions simultaneously. Specifically, we design a Multi-directional State-Space Group to process the image patch sequences in multiple orders and aim to simulate different counting experts. We also design Global-Local Adaptive Fusion to adaptively aggregate global features extracted from multiple directions and local features extracted from the CNN branch in a sample-wise manner. Extensive experiments demonstrate that the proposed CountMamba performs competitively on various plant counting tasks, including maize tassels, wheat ears, and sorghum head counting.
Related papers
- Joint Depth Prediction and Semantic Segmentation with Multi-View SAM [59.99496827912684]
We propose a Multi-View Stereo (MVS) technique for depth prediction that benefits from rich semantic features of the Segment Anything Model (SAM)
This enhanced depth prediction, in turn, serves as a prompt to our Transformer-based semantic segmentation decoder.
arXiv Detail & Related papers (2023-10-31T20:15:40Z) - Counting Like Human: Anthropoid Crowd Counting on Modeling the
Similarity of Objects [92.80955339180119]
mainstream crowd counting methods regress density map and integrate it to obtain counting results.
Inspired by this, we propose a rational and anthropoid crowd counting framework.
arXiv Detail & Related papers (2022-12-02T07:00:53Z) - Automatic counting of mounds on UAV images: combining instance
segmentation and patch-level correction [15.912811733537668]
We present a novel framework exploiting advances in Unmanned Aerial Vehicle (UAV) imaging and computer vision.
We exploit a visual recognition method based on a deep learning algorithm for multiple object detection by pixel-based segmentation.
We employ a machine learning estimation function that predicts the final number of mounds based on the local block properties extracted.
arXiv Detail & Related papers (2022-09-06T16:02:38Z) - Fractional Vegetation Cover Estimation using Hough Lines and Linear
Iterative Clustering [3.1654720243958128]
This paper presents a new image processing algorithm to determine the amount of vegetation cover present in a given area.
The proposed algorithm draws inspiration from the trusted Daubenmire method for vegetation cover estimation.
The analysis when repeated over images captured at regular intervals of time provides crucial insights into plant growth.
arXiv Detail & Related papers (2022-04-30T23:33:31Z) - WheatNet: A Lightweight Convolutional Neural Network for High-throughput
Image-based Wheat Head Detection and Counting [12.735055892742647]
We propose a novel deep learning framework to accurately and efficiently count wheat heads to aid in the gathering of real-time data for decision making.
We call our model WheatNet and show that our approach is robust and accurate for a wide range of environmental conditions of the wheat field.
Our proposed method achieves an MAE and RMSE of 3.85 and 5.19 in our wheat head counting task, respectively, while having significantly fewer parameters when compared to other state-of-the-art methods.
arXiv Detail & Related papers (2021-03-17T02:38:58Z) - Deep Multi-view Image Fusion for Soybean Yield Estimation in Breeding
Applications Deep Multi-view Image Fusion for Soybean Yield Estimation in
Breeding Applications [7.450586438835518]
The objective of this study is to develop a machine learning (ML) approach adept at soybean pod counting.
We developed a multi-view image-based yield estimation framework utilizing deep learning architectures.
Our results demonstrate the promise of ML models in making breeding decisions with significant reduction of time and human effort.
arXiv Detail & Related papers (2020-11-13T20:37:04Z) - Unsupervised Domain Adaptation For Plant Organ Counting [12.424350934766704]
Counting plant organs for image-based plant phenotyping falls within this category.
In this paper, we propose a domain-adrial learning approach for domain adaptation of density map estimation.
arXiv Detail & Related papers (2020-09-02T13:57:09Z) - Counting from Sky: A Large-scale Dataset for Remote Sensing Object
Counting and A Benchmark Method [52.182698295053264]
We are interested in counting dense objects from remote sensing images. Compared with object counting in a natural scene, this task is challenging in the following factors: large scale variation, complex cluttered background, and orientation arbitrariness.
To address these issues, we first construct a large-scale object counting dataset with remote sensing images, which contains four important geographic objects.
We then benchmark the dataset by designing a novel neural network that can generate a density map of an input image.
arXiv Detail & Related papers (2020-08-28T03:47:49Z) - Semi-Supervised Crowd Counting via Self-Training on Surrogate Tasks [50.78037828213118]
This paper tackles the semi-supervised crowd counting problem from the perspective of feature learning.
We propose a novel semi-supervised crowd counting method which is built upon two innovative components.
arXiv Detail & Related papers (2020-07-07T05:30:53Z) - CNN-based Density Estimation and Crowd Counting: A Survey [65.06491415951193]
This paper comprehensively studies the crowd counting models, mainly CNN-based density map estimation methods.
According to the evaluation metrics, we select the top three performers on their crowd counting datasets.
We expect to make reasonable inference and prediction for the future development of crowd counting.
arXiv Detail & Related papers (2020-03-28T13:17:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.