Understanding the AI-powered Binary Code Similarity Detection
- URL: http://arxiv.org/abs/2410.07537v1
- Date: Thu, 10 Oct 2024 02:13:01 GMT
- Title: Understanding the AI-powered Binary Code Similarity Detection
- Authors: Lirong Fu, Peiyu Liu, Wenlong Meng, Kangjie Lu, Shize Zhou, Xuhong Zhang, Wenzhi Chen, Shouling Ji,
- Abstract summary: AI-powered binary code similarity detection (BinSD) has been widely applied to program analysis.
It is difficult to quantitatively understand to what extent the BinSD problem has been solved, especially in realworld applications.
We present a systematic evaluation of state-of-the-art AI-powered BinSD approaches.
- Score: 41.39226562321616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI-powered binary code similarity detection (BinSD), which transforms intricate binary code comparison to the distance measure of code embedding through neural networks, has been widely applied to program analysis. However, due to the diversity of the adopted embedding strategies, evaluation methodologies, running environments, and/or benchmarks, it is difficult to quantitatively understand to what extent the BinSD problem has been solved, especially in realworld applications. Moreover, the lack of an in-depth investigation of the increasingly complex embedding neural networks and various evaluation methodologies has become the key factor hindering the development of AI-powered BinSD. To fill these research gaps, in this paper, we present a systematic evaluation of state-of-the-art AI-powered BinSD approaches by conducting a comprehensive comparison of BinSD systems on similar function detection and two downstream applications, namely vulnerability search and license violation detection. Building upon this evaluation, we perform the first investigation of embedding neural networks and evaluation methodologies. The experimental results yield several findings, which provide valuable insights in the BinSD domain, including (1) despite the GNN-based BinSD systems currently achieving the best performance in similar function detection, there still exists considerable space for improvements;(2) the capability of AI-powered BinSD approaches exhibits significant variation when applied to different downstream applications;(3) existing evaluation methodologies still need substantial adjustments. For instance, the evaluation metrics (such as the widely adopted ROC and AUC) usually fall short of accurately representing the model performance of the practical use in realworld scenarios. Based on the extensive experiments and analysis, we further provide several promising future research directions.
Related papers
- Binary Code Similarity Detection via Graph Contrastive Learning on Intermediate Representations [52.34030226129628]
Binary Code Similarity Detection (BCSD) plays a crucial role in numerous fields, including vulnerability detection, malware analysis, and code reuse identification.
In this paper, we propose IRBinDiff, which mitigates compilation differences by leveraging LLVM-IR with higher-level semantic abstraction.
Our extensive experiments, conducted under varied compilation settings, demonstrate that IRBinDiff outperforms other leading BCSD methods in both One-to-one comparison and One-to-many search scenarios.
arXiv Detail & Related papers (2024-10-24T09:09:20Z) - BinSimDB: Benchmark Dataset Construction for Fine-Grained Binary Code Similarity Analysis [6.093226756571566]
We construct a benchmark dataset for fine-grained binary code similarity analysis called BinSimDB.
Specifically, we propose BMerge and BPair algorithms to bridge the discrepancies between two binary code snippets.
The experimental results demonstrate that BinSimDB significantly improves the performance of binary code similarity comparison.
arXiv Detail & Related papers (2024-10-14T05:13:48Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Quantifying uncertainty for deep learning based forecasting and
flow-reconstruction using neural architecture search ensembles [0.8258451067861933]
We present an automated approach to deep neural network (DNN) discovery and demonstrate how this may also be utilized for ensemble-based uncertainty quantification.
We highlight how the proposed method not only discovers high-performing neural network ensembles for our tasks, but also quantifies uncertainty seamlessly.
We demonstrate the feasibility of this framework for two tasks - forecasting from historical data and flow reconstruction from sparse sensors for the sea-surface temperature.
arXiv Detail & Related papers (2023-02-20T03:57:06Z) - UniASM: Binary Code Similarity Detection without Fine-tuning [0.8271859911016718]
We propose a novel transformer-based binary code embedding model named UniASM to learn representations of the binary functions.
In the real-world task of known vulnerability search, UniASM outperforms all the current baselines.
arXiv Detail & Related papers (2022-10-28T14:04:57Z) - Neural Causal Models for Counterfactual Identification and Estimation [62.30444687707919]
We study the evaluation of counterfactual statements through neural models.
First, we show that neural causal models (NCMs) are expressive enough.
Second, we develop an algorithm for simultaneously identifying and estimating counterfactual distributions.
arXiv Detail & Related papers (2022-09-30T18:29:09Z) - Benchmarking Deep Models for Salient Object Detection [67.07247772280212]
We construct a general SALient Object Detection (SALOD) benchmark to conduct a comprehensive comparison among several representative SOD methods.
In the above experiments, we find that existing loss functions usually specialized in some metrics but reported inferior results on the others.
We propose a novel Edge-Aware (EA) loss that promotes deep networks to learn more discriminative features by integrating both pixel- and image-level supervision signals.
arXiv Detail & Related papers (2022-02-07T03:43:16Z) - Learning a Domain-Agnostic Visual Representation for Autonomous Driving
via Contrastive Loss [25.798361683744684]
Domain-Agnostic Contrastive Learning (DACL) is a two-stage unsupervised domain adaptation framework with cyclic adversarial training and contrastive loss.
Our proposed approach achieves better performance in the monocular depth estimation task compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-10T07:06:03Z) - Heterogeneous Network Representation Learning: A Unified Framework with
Survey and Benchmark [57.10850350508929]
We aim to provide a unified framework to summarize and evaluate existing research on heterogeneous network embedding (HNE)
As the first contribution, we provide a generic paradigm for the systematic categorization and analysis over the merits of various existing HNE algorithms.
As the second contribution, we create four benchmark datasets with various properties regarding scale, structure, attribute/label availability, and etcfrom different sources.
As the third contribution, we create friendly interfaces for 13 popular HNE algorithms, and provide all-around comparisons among them over multiple tasks and experimental settings.
arXiv Detail & Related papers (2020-04-01T03:42:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.