PLaMo-100B: A Ground-Up Language Model Designed for Japanese Proficiency
- URL: http://arxiv.org/abs/2410.07563v2
- Date: Tue, 22 Oct 2024 09:06:38 GMT
- Title: PLaMo-100B: A Ground-Up Language Model Designed for Japanese Proficiency
- Authors: Preferred Elements, :, Kenshin Abe, Kaizaburo Chubachi, Yasuhiro Fujita, Yuta Hirokawa, Kentaro Imajo, Toshiki Kataoka, Hiroyoshi Komatsu, Hiroaki Mikami, Tsuguo Mogami, Shogo Murai, Kosuke Nakago, Daisuke Nishino, Toru Ogawa, Daisuke Okanohara, Yoshihiko Ozaki, Shotaro Sano, Shuji Suzuki, Tianqi Xu, Toshihiko Yanase,
- Abstract summary: We introduce PLaMo-100B, a large-scale language model designed for Japanese proficiency.
The model was trained from scratch using 2 trillion tokens.
Benchmark evaluations suggest that PLaMo-100B performs well, particularly in Japanese-specific tasks.
- Score: 4.122864669557465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce PLaMo-100B, a large-scale language model designed for Japanese proficiency. The model was trained from scratch using 2 trillion tokens, with architecture such as QK Normalization and Z-Loss to ensure training stability during the training process. Post-training techniques, including Supervised Fine-Tuning and Direct Preference Optimization, were applied to refine the model's performance. Benchmark evaluations suggest that PLaMo-100B performs well, particularly in Japanese-specific tasks, achieving results that are competitive with frontier models like GPT-4. The base model is available at https://huggingface.co/pfnet/plamo-100b.
Related papers
- Yi: Open Foundation Models by 01.AI [42.94680878285869]
Yi model family is based on 6B and 34B pretrained language models, then we extend them to chat models, 200K long context models, depth-upscaled models, and vision-language models.
Our base models achieve strong performance on a wide range of benchmarks like MMLU, and our fine chat models deliver strong human preference rate on major evaluation platforms like AlpacaEval and Arena.
arXiv Detail & Related papers (2024-03-07T16:52:49Z) - Pre-trained Model Guided Fine-Tuning for Zero-Shot Adversarial Robustness [52.9493817508055]
We propose Pre-trained Model Guided Adversarial Fine-Tuning (PMG-AFT) to enhance the model's zero-shot adversarial robustness.
Our approach consistently improves clean accuracy by an average of 8.72%.
arXiv Detail & Related papers (2024-01-09T04:33:03Z) - Look Ma, Only 400 Samples! Revisiting the Effectiveness of Automatic
N-Gram Rule Generation for Spelling Normalization in Filipino [0.0]
84.75 million Filipinos online, the ability for models to process online text is crucial for developing Filipino NLP applications.
We propose an N-Gram + Damerau Levenshtein distance model with automatic rule extraction.
arXiv Detail & Related papers (2022-10-06T04:41:26Z) - GLM-130B: An Open Bilingual Pre-trained Model [56.694470924635624]
We introduce GLM-130B, a bilingual (English and Chinese) pre-trained language model with 130 billion parameters.
It is an attempt to open-source a 100B-scale model at least as good as GPT-3 (davinci) and unveil how models of such a scale can be successfully pre-trained.
arXiv Detail & Related papers (2022-10-05T17:34:44Z) - Unifying Language Learning Paradigms [96.35981503087567]
We present a unified framework for pre-training models that are universally effective across datasets and setups.
We show how different pre-training objectives can be cast as one another and how interpolating between different objectives can be effective.
Our model also achieve strong results at in-context learning, outperforming 175B GPT-3 on zero-shot SuperGLUE and tripling the performance of T5-XXL on one-shot summarization.
arXiv Detail & Related papers (2022-05-10T19:32:20Z) - Efficient Large Scale Language Modeling with Mixtures of Experts [61.45159383372181]
Mixture of Experts layers (MoEs) enable efficient scaling of language models through conditional computation.
This paper presents a detailed empirical study of how autoregressive MoE language models scale in comparison with dense models in a wide range of settings.
arXiv Detail & Related papers (2021-12-20T17:05:11Z) - Scalable and Efficient MoE Training for Multitask Multilingual Models [55.987536562357086]
We develop a system capable of scaling MoE models efficiently to trillions of parameters.
We also present new training methods to improve MoE sample efficiency and leverage expert pruning strategy to improve time efficiency.
A model trained with 10 billion parameters on 50 languages can achieve state-of-the-art performance in Machine Translation (MT) and multilingual natural language generation tasks.
arXiv Detail & Related papers (2021-09-22T00:57:46Z) - Pronoun-Targeted Fine-tuning for NMT with Hybrid Losses [6.596002578395152]
We introduce a class of conditional generative-discriminative hybrid losses that we use to fine-tune a trained machine translation model.
We improve the model performance of both a sentence-level and a contextual model without using any additional data.
Our sentence-level model shows a 0.5 BLEU improvement on both the WMT14 and the IWSLT13 De-En testsets.
Our contextual model achieves the best results, improving from 31.81 to 32 BLEU on WMT14 De-En testset, and from 32.10 to 33.13 on the IWSLT13 De-En
arXiv Detail & Related papers (2020-10-15T10:11:40Z) - FiSSA at SemEval-2020 Task 9: Fine-tuned For Feelings [2.362412515574206]
In this paper, we present our approach for sentiment classification on Spanish-English code-mixed social media data.
We explore both monolingual and multilingual models with the standard fine-tuning method.
Although two-step fine-tuning improves sentiment classification performance over the base model, the large multilingual XLM-RoBERTa model achieves best weighted F1-score.
arXiv Detail & Related papers (2020-07-24T14:48:27Z) - Recipes for Adapting Pre-trained Monolingual and Multilingual Models to
Machine Translation [50.0258495437314]
We investigate the benefits and drawbacks of freezing parameters, and adding new ones, when fine-tuning a pre-trained model on Machine Translation (MT)
For BART we get the best performance by freezing most of the model parameters, and adding extra positional embeddings.
For mBART we match or outperform the performance of naive fine-tuning for most language pairs with the encoder, and most of the decoder, frozen.
arXiv Detail & Related papers (2020-04-30T16:09:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.