論文の概要: CSA: Data-efficient Mapping of Unimodal Features to Multimodal Features
- arxiv url: http://arxiv.org/abs/2410.07610v2
- Date: Mon, 25 Nov 2024 17:01:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:17:46.085662
- Title: CSA: Data-efficient Mapping of Unimodal Features to Multimodal Features
- Title(参考訳): CSA: 単モーダル特徴から多モーダル特徴へのデータ効率マッピング
- Authors: Po-han Li, Sandeep P. Chinchali, Ufuk Topcu,
- Abstract要約: CLIPのようなマルチモーダルエンコーダは、ゼロショット画像分類やクロスモーダル検索といったタスクに優れている。
そこで本研究では,2つのユニモーダルエンコーダを用いて,制限データを用いたマルチモーダルエンコーダを複製する正準類似性解析(CSA)を提案する。
- 参考スコア(独自算出の注目度): 18.5370516345512
- License:
- Abstract: Multimodal encoders like CLIP excel in tasks such as zero-shot image classification and cross-modal retrieval. However, they require excessive training data. We propose canonical similarity analysis (CSA), which uses two unimodal encoders to replicate multimodal encoders using limited data. CSA maps unimodal features into a multimodal space, using a new similarity score to retain only the multimodal information. CSA only involves the inference of unimodal encoders and a cubic-complexity matrix decomposition, eliminating the need for extensive GPU-based model training. Experiments show that CSA outperforms CLIP while requiring $300,000\times$ fewer multimodal data pairs and $6\times$ fewer unimodal data for ImageNet classification and misinformative news captions detection. CSA surpasses the state-of-the-art method to map unimodal features to multimodal features. We also demonstrate the ability of CSA with modalities beyond image and text, paving the way for future modality pairs with limited paired multimodal data but abundant unpaired unimodal data, such as lidar and text.
- Abstract(参考訳): CLIPのようなマルチモーダルエンコーダは、ゼロショット画像分類やクロスモーダル検索といったタスクに優れている。
しかし、過剰なトレーニングデータが必要である。
そこで本研究では,2つのユニモーダルエンコーダを用いて,制限データを用いたマルチモーダルエンコーダを複製する正準類似性解析(CSA)を提案する。
CSAは、単一の特徴をマルチモーダル空間にマッピングし、新しい類似度スコアを使用して、マルチモーダル情報のみを保持する。
CSAは、ユニモーダルエンコーダと立方体複素行列分解の推論のみを伴い、GPUベースの広範囲なモデルトレーニングの必要性を排除している。
実験の結果、CSAはCLIPより優れており、マルチモーダルデータペアの削減に30万ドル、ImageNet分類と誤字ニュースキャプションの検出に6ドル、という結果が得られた。
CSAは、非モーダルな特徴をマルチモーダルな特徴にマッピングする最先端の手法を超越している。
また,画像やテキストを超えたモダリティを持つCSAの能力を実証し,リダやテキストのような多モーダルデータに制限があるが,多モーダルデータと将来のモダリティペアの道を開いた。
関連論文リスト
- Multimodality Helps Few-Shot 3D Point Cloud Semantic Segmentation [61.91492500828508]
FS-PCS (Few-shot 3D point cloud segmentation) は、最小のサポートサンプルで新しいカテゴリを分割するモデルを一般化することを目的としている。
本稿では,テキストラベルと潜在的に利用可能な2次元画像モダリティを利用して,コストフリーのマルチモーダルFS-PCSセットアップを提案する。
トレーニングバイアスを軽減するため,テスト時間適応型クロスモーダルセグ(TACC)技術を提案する。
論文 参考訳(メタデータ) (2024-10-29T19:28:41Z) - Data-Efficient Multimodal Fusion on a Single GPU [18.178010162049535]
FuseMix は任意の訓練済みの単調エンコーダの潜時空間で動作するスキームである。
本稿では,事前学習したテキストから画像への生成モデルを音声から画像へ変換する手法を提案する。
論文 参考訳(メタデータ) (2023-12-15T19:00:07Z) - Semi-supervised Multimodal Representation Learning through a Global Workspace [2.8948274245812335]
グローバルワークスペース」は2つの入力モダリティの共有表現である。
このアーキテクチャは、サイクル一貫性による自己教師型トレーニングに適しています。
このようなアーキテクチャは、一致したデータを必要とすることがほとんどなく、2つのモダリティを調整し、翻訳するように訓練できることを示します。
論文 参考訳(メタデータ) (2023-06-27T12:41:36Z) - Factorized Contrastive Learning: Going Beyond Multi-view Redundancy [116.25342513407173]
本稿では,マルチビュー冗長性を超えた新しいマルチモーダル表現学習法であるFacterCLを提案する。
大規模な実世界のデータセットでは、FacterCLは共有情報とユニークな情報の両方をキャプチャし、最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-06-08T15:17:04Z) - Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications [90.6849884683226]
ラベル付き単調データのみを用いた半教師付き環境における相互作用定量化の課題について検討する。
相互作用の正確な情報理論的定義を用いて、我々の重要な貢献は下界と上界の導出である。
本稿では、これらの理論結果を用いてマルチモーダルモデルの性能を推定し、データ収集をガイドし、様々なタスクに対して適切なマルチモーダルモデルを選択する方法について述べる。
論文 参考訳(メタデータ) (2023-06-07T15:44:53Z) - Unimodal Training-Multimodal Prediction: Cross-modal Federated Learning
with Hierarchical Aggregation [16.308470947384134]
HA-Fedformerは新しいトランスフォーマーベースのモデルで、クライアントでのアンモダルデータセットのみを使用して、単一モダルトレーニングを可能にする。
我々は,マルコフ連鎖モンテカルロサンプリングを用いた局所エンコーダの不確実性を考慮したアグリゲーション法を開発した。
一般的な感情分析ベンチマークであるCMU-MOSIとCMU-MOSEIの実験は、HA-Fedformerが最先端のマルチモーダルモデルを大幅に上回ることを示した。
論文 参考訳(メタデータ) (2023-03-27T07:07:33Z) - Align and Attend: Multimodal Summarization with Dual Contrastive Losses [57.83012574678091]
マルチモーダル要約の目標は、異なるモーダルから最も重要な情報を抽出し、出力要約を形成することである。
既存の手法では、異なるモダリティ間の時間的対応の活用に失敗し、異なるサンプル間の本質的な相関を無視する。
A2Summ(Align and Attend Multimodal Summarization)は、マルチモーダル入力を効果的に整列し、参加できる統一型マルチモーダルトランスフォーマーモデルである。
論文 参考訳(メタデータ) (2023-03-13T17:01:42Z) - Multimodal Adaptive Distillation for Leveraging Unimodal Encoders for
Vision-Language Tasks [118.49566068398642]
視覚言語(VL)タスクのためのクロスモーダルエンコーダは、しばしば注意深く計算された視覚言語データセットで事前訓練される。
一様エンコーダは、コスト抑制の少ない単純なアノテーションで事前訓練され、数十億から数十億のスケールを達成する。
我々は,事前学習したエンコーダから多モードVLエンコーダへの有用な知識を適応的に蒸留するマルチモーダル適応蒸留(MAD)を提案する。
論文 参考訳(メタデータ) (2022-04-22T04:41:04Z) - Routing with Self-Attention for Multimodal Capsule Networks [108.85007719132618]
我々は,カプセルの強度をマルチモーダル学習フレームワークの文脈で活用できる,新しいマルチモーダルカプセルネットワークを提案する。
カプセルを大規模入力データに適応させるために, カプセルを選択する自己保持機構による新たなルーティングを提案する。
これにより、ノイズの多いビデオデータによる堅牢なトレーニングだけでなく、従来のルーティング方法と比較してカプセルネットワークのサイズを拡大することが可能になる。
論文 参考訳(メタデータ) (2021-12-01T19:01:26Z) - Unsupervised Multimodal Language Representations using Convolutional
Autoencoders [5.464072883537924]
本稿では,教師なしマルチモーダル言語表現の抽出について提案する。
単語レベルのアライメントされたマルチモーダルシーケンスを2次元行列にマップし、畳み込みオートエンコーダを用いて複数のデータセットを組み合わせることで埋め込みを学習する。
また,本手法は非常に軽量で,他のタスクに容易に一般化でき,少ない性能低下とほぼ同じ数のパラメータを持つ未確認データが得られることを示した。
論文 参考訳(メタデータ) (2021-10-06T18:28:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。