Parallel Digital Twin-driven Deep Reinforcement Learning for User Association and Load Balancing in Dynamic Wireless Networks
- URL: http://arxiv.org/abs/2410.07611v1
- Date: Thu, 10 Oct 2024 04:54:48 GMT
- Title: Parallel Digital Twin-driven Deep Reinforcement Learning for User Association and Load Balancing in Dynamic Wireless Networks
- Authors: Zhenyu Tao, Wei Xu, Xiaohu You,
- Abstract summary: We propose a parallel digital twin (DT)-driven DRL method for user association and load balancing in networks.
Our method employs a distributed DRL strategy to handle varying user numbers and exploits a refined neural network structure for faster convergence.
Numerical results show that the proposed parallel DT-driven DRL method achieves closely comparable performance to real environment training.
- Score: 17.041443813376546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimization of user association in a densely deployed heterogeneous cellular network is usually challenging and even more complicated due to the dynamic nature of user mobility and fluctuation in user counts. While deep reinforcement learning (DRL) emerges as a promising solution, its application in practice is hindered by high trial-and-error costs in real world and unsatisfactory physical network performance during training. In addition, existing DRL-based user association methods are usually only applicable to scenarios with a fixed number of users due to convergence and compatibility challenges. In this paper, we propose a parallel digital twin (DT)-driven DRL method for user association and load balancing in networks with both dynamic user counts, distribution, and mobility patterns. Our method employs a distributed DRL strategy to handle varying user numbers and exploits a refined neural network structure for faster convergence. To address these DRL training-related challenges, we devise a high-fidelity DT construction technique, featuring a zero-shot generative user mobility model, named Map2Traj, based on a diffusion model. Map2Traj estimates user trajectory patterns and spatial distributions solely from street maps. Armed with this DT environment, DRL agents are enabled to be trained without the need for interactions with the physical network. To enhance the generalization ability of DRL models for dynamic scenarios, a parallel DT framework is further established to alleviate strong correlation and non-stationarity in single-environment training and improve the training efficiency. Numerical results show that the proposed parallel DT-driven DRL method achieves closely comparable performance to real environment training, and even outperforms those trained in a single real-world environment with nearly 20% gain in terms of cell-edge user performance.
Related papers
- DistRL: An Asynchronous Distributed Reinforcement Learning Framework for On-Device Control Agents [38.0441002097771]
DistRL is a novel framework designed to enhance the efficiency of online RL fine-tuning for mobile device control agents.
On average, DistRL delivers a 3X improvement in training efficiency and enables training data collection 2.4X faster than the leading synchronous multi-machine methods.
arXiv Detail & Related papers (2024-10-18T18:19:56Z) - Compressing Deep Reinforcement Learning Networks with a Dynamic
Structured Pruning Method for Autonomous Driving [63.155562267383864]
Deep reinforcement learning (DRL) has shown remarkable success in complex autonomous driving scenarios.
DRL models inevitably bring high memory consumption and computation, which hinders their wide deployment in resource-limited autonomous driving devices.
We introduce a novel dynamic structured pruning approach that gradually removes a DRL model's unimportant neurons during the training stage.
arXiv Detail & Related papers (2024-02-07T09:00:30Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Digital Twin Assisted Deep Reinforcement Learning for Online Admission
Control in Sliced Network [19.152875040151976]
We propose a digital twin (DT) accelerated DRL solution to address this issue.
A neural network-based DT is established with a customized output layer for queuing systems, trained through supervised learning, and then employed to assist the training phase of the DRL model.
Extensive simulations show that the DT-accelerated DRL improves resource utilization by over 40% compared to the directly trained state-of-the-art dueling deep Q-learning model.
arXiv Detail & Related papers (2023-10-07T09:09:19Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
We present a model-based RL method that learns to transfer potentially useful dynamics and action demonstrations from offline data to a novel task.
The main idea is to use the world models not only as simulators for behavior learning but also as tools to measure the task relevance.
We demonstrate the advantages of our approach compared with the state-of-the-art methods in Meta-World and DeepMind Control Suite.
arXiv Detail & Related papers (2023-06-06T02:24:41Z) - DRL-GAN: A Hybrid Approach for Binary and Multiclass Network Intrusion
Detection [2.7122540465034106]
Intrusion detection systems (IDS) are an essential security technology for detecting these attacks.
We implement a novel hybrid technique using synthetic data produced by a Generative Adversarial Network (GAN) to use as input for training a Deep Reinforcement Learning (DRL) model.
Our findings demonstrate that training the DRL on specific synthetic datasets can result in better performance in correctly classifying minority classes over training on the true imbalanced dataset.
arXiv Detail & Related papers (2023-01-05T19:51:24Z) - Improving GANs with A Dynamic Discriminator [106.54552336711997]
We argue that a discriminator with an on-the-fly adjustment on its capacity can better accommodate such a time-varying task.
A comprehensive empirical study confirms that the proposed training strategy, termed as DynamicD, improves the synthesis performance without incurring any additional cost or training objectives.
arXiv Detail & Related papers (2022-09-20T17:57:33Z) - Federated Deep Reinforcement Learning for the Distributed Control of
NextG Wireless Networks [16.12495409295754]
Next Generation (NextG) networks are expected to support demanding internet tactile applications such as augmented reality and connected autonomous vehicles.
Data-driven approaches can improve the ability of the network to adapt to the current operating conditions.
Deep RL (DRL) has been shown to achieve good performance even in complex environments.
arXiv Detail & Related papers (2021-12-07T03:13:20Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - Value Function is All You Need: A Unified Learning Framework for Ride
Hailing Platforms [57.21078336887961]
Large ride-hailing platforms, such as DiDi, Uber and Lyft, connect tens of thousands of vehicles in a city to millions of ride demands throughout the day.
We propose a unified value-based dynamic learning framework (V1D3) for tackling both tasks.
arXiv Detail & Related papers (2021-05-18T19:22:24Z) - Pareto Deterministic Policy Gradients and Its Application in 5G Massive
MIMO Networks [32.099949375036495]
We consider jointly optimizing cell load balance and network throughput via a reinforcement learning (RL) approach.
Our rationale behind using RL is to circumvent the challenges of analytically modeling user mobility and network dynamics.
To accomplish this joint optimization, we integrate vector rewards into the RL value network and conduct RL action via a separate policy network.
arXiv Detail & Related papers (2020-12-02T15:35:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.