論文の概要: Theoretical limits of descending $\ell_0$ sparse-regression ML algorithms
- arxiv url: http://arxiv.org/abs/2410.07651v1
- Date: Thu, 10 Oct 2024 06:33:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 15:46:26.777186
- Title: Theoretical limits of descending $\ell_0$ sparse-regression ML algorithms
- Title(参考訳): $\ell_0$ スパース回帰MLアルゴリズムの理論的限界
- Authors: Mihailo Stojnic,
- Abstract要約: 本研究では,emphmaximum-likelihood (ML)デコーディングの性能解析プログラムを開発した。
ML性能パラメータの鍵となるのは、残留エンフェロ平均二乗誤差(textbfRMSE$)を発見し、いわゆるエンフェロ遷移(PT)現象を示す。
Fl RDTの具体的実装と実用的妥当性は、典型的には、基礎となる数値評価のサイズのセットを実行する能力に依存している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the theoretical limits of the $\ell_0$ (quasi) norm based optimization algorithms when employed for solving classical compressed sensing or sparse regression problems. Considering standard contexts with deterministic signals and statistical systems, we utilize \emph{Fully lifted random duality theory} (Fl RDT) and develop a generic analytical program for studying performance of the \emph{maximum-likelihood} (ML) decoding. The key ML performance parameter, the residual \emph{root mean square error} ($\textbf{RMSE}$), is uncovered to exhibit the so-called \emph{phase-transition} (PT) phenomenon. The associated aPT curve, which separates the regions of systems dimensions where \emph{an} $\ell_0$ based algorithm succeeds or fails in achieving small (comparable to the noise) ML optimal $\textbf{RMSE}$ is precisely determined as well. In parallel, we uncover the existence of another dPT curve which does the same separation but for practically feasible \emph{descending} $\ell_0$ ($d\ell_0$) algorithms. Concrete implementation and practical relevance of the Fl RDT typically rely on the ability to conduct a sizeable set of the underlying numerical evaluations which reveal that for the ML decoding the Fl RDT converges astonishingly fast with corrections in the estimated quantities not exceeding $\sim 0.1\%$ already on the third level of lifting. Analytical results are supplemented by a sizeable set of numerical experiments where we implement a simple variant of $d\ell_0$ and demonstrate that its practical performance very accurately matches the theoretical predictions. Completely surprisingly, a remarkably precise agreement between the simulations and the theory is observed for fairly small dimensions of the order of 100.
- Abstract(参考訳): 古典的圧縮センシングやスパース回帰問題の解法において,$\ell_0$(quasi)ノルムに基づく最適化アルゴリズムの理論的限界について検討する。
決定論的信号と統計システムを用いた標準的な文脈を考慮し,Fl RDT(Femph{Fully lifted random duality theory})とML(ML)復号法の性能解析プログラムを開発した。
キーML性能パラメータである残留 \emph{root mean square error} ("\textbf{RMSE}$") が発見され、いわゆる \emph{phase-transition} (PT) 現象を示す。
emph{an} $\ell_0$ ベースのアルゴリズムが小さい(ノイズに匹敵する) ML の最適 $\textbf{RMSE}$ が正確に決定されるようなシステム次元の領域を分離する APT 曲線。
平行して、同じ分離を行う別の dPT 曲線の存在を明らかにするが、実際は実現可能な \emph{descending} $\ell_0$$$d\ell_0$) アルゴリズムに対してである。
Fl RDTの具体的実装と実用的妥当性は、Fl RDTを復号するMLが驚くほど速く収束し、推定量の補正が既に3段階のリフトで$\sim 0.1\%以上であることを示す、基礎となる数値評価のスケール可能なセットを実行する能力に依存するのが一般的である。
解析結果は、$d\ell_0$の単純な変種を実装し、その実用性能が理論的予測と非常に正確に一致していることを示す数値実験によって補足される。
完全に驚くべきことに、シミュレーションと理論の間の驚くほど正確な一致は、100のオーダーのかなり小さな次元に対して観察される。
関連論文リスト
- Stable Minima Cannot Overfit in Univariate ReLU Networks: Generalization by Large Step Sizes [29.466981306355066]
固定学習率$eta$の勾配降下はスムーズな関数を表す局所最小値しか見つからないことを示す。
また、$n$のデータポイントのサポートの厳密な内部で、$widetildeO(n-4/5)$のほぼ最適MSE境界を証明します。
論文 参考訳(メタデータ) (2024-06-10T22:57:27Z) - MGDA Converges under Generalized Smoothness, Provably [27.87166415148172]
多目的最適化(MOO)はマルチタスク学習など様々な分野で注目を集めている。
最近の研究は、理論解析を伴う効果的なアルゴリズムを提供しているが、それらは標準の$L$-smoothあるいは有界勾配仮定によって制限されている。
一般化された$ell$-smooth損失関数のより一般的で現実的なクラスについて研究し、$ell$は勾配ノルムの一般非減少関数である。
論文 参考訳(メタデータ) (2024-05-29T18:36:59Z) - Globally Convergent Accelerated Algorithms for Multilinear Sparse
Logistic Regression with $\ell_0$-constraints [2.323238724742687]
多重線形ロジスティック回帰は多次元データ解析の強力なツールである。
本稿では,$ell_0$-MLSRを解くために,アクセラレーションされた近位置換最小値MLSRモデルを提案する。
また、APALM$+$が一階臨界点に大域収束し、クルディ・ロジャシエヴィチ性質を用いて収束を確立することも示している。
論文 参考訳(メタデータ) (2023-09-17T11:05:08Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
縮退した線形マルコフ+デルタ決定における最適同定問題について, 生成モデルに基づく固定信頼度設定における検討を行った。
複雑な非最適化プログラムの解としての下位境界は、そのようなアルゴリズムを考案する出発点として用いられる。
論文 参考訳(メタデータ) (2022-08-11T04:12:50Z) - Minimax Optimal Quantization of Linear Models: Information-Theoretic
Limits and Efficient Algorithms [59.724977092582535]
測定から学習した線形モデルの定量化の問題を考える。
この設定の下では、ミニマックスリスクに対する情報理論の下限を導出する。
本稿では,2層ReLUニューラルネットワークに対して,提案手法と上界を拡張可能であることを示す。
論文 参考訳(メタデータ) (2022-02-23T02:39:04Z) - Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free
Reinforcement Learning [52.76230802067506]
漸進的強化学習における後悔を最小限に抑えるために,新しいモデルフリーアルゴリズムを提案する。
提案アルゴリズムは、2つのQ-ラーニングシーケンスの助けを借りて、初期設定された参照更新ルールを用いる。
初期の分散還元法の設計原理は、他のRL設定とは独立した関心を持つかもしれない。
論文 参考訳(メタデータ) (2021-10-09T21:13:48Z) - Under-bagging Nearest Neighbors for Imbalanced Classification [63.026765294759876]
我々は,不均衡な分類問題に対して,textitunder-bagging $k$-NN (textitunder-bagging $k$-NN) というアンサンブル学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-01T14:10:38Z) - Randomized Exploration for Reinforcement Learning with General Value
Function Approximation [122.70803181751135]
本稿では,ランダム化最小二乗値反復(RLSVI)アルゴリズムに着想を得たモデルレス強化学習アルゴリズムを提案する。
提案アルゴリズムは,スカラーノイズを用いたトレーニングデータを簡易に摂動させることにより,探索を促進する。
我々はこの理論を、既知の困難な探査課題にまたがる実証的な評価で補完する。
論文 参考訳(メタデータ) (2021-06-15T02:23:07Z) - Breaking the Sample Size Barrier in Model-Based Reinforcement Learning
with a Generative Model [50.38446482252857]
本稿では、生成モデル(シミュレータ)へのアクセスを想定して、強化学習のサンプル効率について検討する。
最初に$gamma$-discounted infinite-horizon Markov decision process (MDPs) with state space $mathcalS$ and action space $mathcalA$を考える。
対象の精度を考慮すれば,モデルに基づく計画アルゴリズムが最小限のサンプルの複雑さを実現するのに十分であることを示す。
論文 参考訳(メタデータ) (2020-05-26T17:53:18Z) - A Precise High-Dimensional Asymptotic Theory for Boosting and
Minimum-$\ell_1$-Norm Interpolated Classifiers [3.167685495996986]
本稿では,分離可能なデータの強化に関する高精度な高次元理論を確立する。
統計モデルのクラスでは、ブースティングの普遍性誤差を正確に解析する。
また, 推力試験誤差と最適ベイズ誤差の関係を明示的に説明する。
論文 参考訳(メタデータ) (2020-02-05T00:24:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。