Inequality constraints in variational quantum circuits with qudits
- URL: http://arxiv.org/abs/2410.07674v1
- Date: Thu, 10 Oct 2024 07:32:38 GMT
- Title: Inequality constraints in variational quantum circuits with qudits
- Authors: Alberto Bottarelli, Sebastian Schmitt, Philipp Hauke,
- Abstract summary: Quantum optimization is emerging as a prominent candidate for exploiting the capabilities of near-term quantum devices.
Here, we study an alternative direct implementation of inequality constraints within the QAOA algorithm, achieved using qudit-SUM gates.
We find that the direct implementation of the inequality penalties vastly outperforms the slack variables method, especially when studying real-world inspired problems with many constraints.
- Score: 1.0923877073891446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum optimization is emerging as a prominent candidate for exploiting the capabilities of near-term quantum devices. Many application-relevant optimization tasks require the inclusion of inequality constraints, usually handled by enlarging the Hilbert space through the addition of slack variables. This approach, however, requires significant additional resources especially when considering multiple constraints. Here, we study an alternative direct implementation of these constraints within the QAOA algorithm, achieved using qudit-SUM gates, and compare it to the slack variable method generalized to qudits. We benchmark these approaches on three paradigmatic optimization problems. We find that the direct implementation of the inequality penalties vastly outperforms the slack variables method, especially when studying real-world inspired problems with many constraints. Within the direct penalty implementation, a linear energy penalty for unfeasible states outperforms other investigated functional forms, such as the canonical quadratic penalty. The proposed approach may thus be an enabling step for approaching realistic industry-scale and fundamental science problems with large numbers of inequality constraints.
Related papers
- Quantum optimization with linear Ising penalty functions for customer data science [0.5242869847419834]
In quantum algorithms, constraints are typically implemented with quadratic penalty functions.
This penalty method can introduce large energy scales and make interaction graphs much more dense.
We consider linear Ising penalty functions as an alternative method for implementing constraints that makes more efficient use of physical resources.
arXiv Detail & Related papers (2024-04-08T12:46:22Z) - Improving Performance in Combinatorial Optimization Problems with
Inequality Constraints: An Evaluation of the Unbalanced Penalization Method
on D-Wave Advantage [0.0]
A new method known as unbalanced penalization has been presented to avoid using slack variables.
This work tests the unbalanced penalization method using real quantum hardware on D-Wave Advantage for the traveling salesman problem (TSP)
The results show that the unbalanced penalization method outperforms the solutions found using slack variables.
arXiv Detail & Related papers (2023-05-30T05:40:50Z) - Multiobjective variational quantum optimization for constrained
problems: an application to Cash Management [45.82374977939355]
We introduce a new method for solving optimization problems with challenging constraints using variational quantum algorithms.
We test our proposal on a real-world problem with great relevance in finance: the Cash Management problem.
Our empirical results show a significant improvement in terms of the cost of the achieved solutions, but especially in the avoidance of local minima.
arXiv Detail & Related papers (2023-02-08T17:09:20Z) - Unbalanced penalization: A new approach to encode inequality constraints of combinatorial problems for quantum optimization algorithms [42.29248343585333]
We present an alternative method that does not require extra slack variables.
We evaluate our approach on the traveling salesman problem, the bin packing problem, and the knapsack problem.
This new approach can be used to solve problems with inequality constraints with a reduced number of resources.
arXiv Detail & Related papers (2022-11-25T06:05:18Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - Learning to Optimize with Stochastic Dominance Constraints [103.26714928625582]
In this paper, we develop a simple yet efficient approach for the problem of comparing uncertain quantities.
We recast inner optimization in the Lagrangian as a learning problem for surrogate approximation, which bypasses apparent intractability.
The proposed light-SD demonstrates superior performance on several representative problems ranging from finance to supply chain management.
arXiv Detail & Related papers (2022-11-14T21:54:31Z) - Exploiting In-Constraint Energy in Constrained Variational Quantum
Optimization [7.541345730271882]
In general, such constraints cannot be easily encoded in the circuit, and the quantum circuit measurement outcomes are not guaranteed to respect the constraints.
We propose a new approach for solving constrained optimization problems with unimplement, easy-to-constrained quantum ansatze.
We implement our method in QVoice, a Python package that interfaces with Qiskit for quick prototyping in simulators and on quantum hardware.
arXiv Detail & Related papers (2022-11-13T20:58:00Z) - Constrained mixers for the quantum approximate optimization algorithm [55.41644538483948]
We present a framework for constructing mixing operators that restrict the evolution to a subspace of the full Hilbert space.
We generalize the "XY"-mixer designed to preserve the subspace of "one-hot" states to the general case of subspaces given by a number of computational basis states.
Our analysis also leads to valid Trotterizations for "XY"-mixer with fewer CX gates than is known to date.
arXiv Detail & Related papers (2022-03-11T17:19:26Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.