Rethinking the Principle of Gradient Smooth Methods in Model Explanation
- URL: http://arxiv.org/abs/2410.07711v1
- Date: Thu, 10 Oct 2024 08:24:27 GMT
- Title: Rethinking the Principle of Gradient Smooth Methods in Model Explanation
- Authors: Linjiang Zhou, Chao Ma, Zepeng Wang, Xiaochuan Shi,
- Abstract summary: Gradient Smoothing is an efficient approach to reducing noise in gradient-based model explanation method.
We propose an adaptive gradient smoothing method, AdaptGrad, based on these insights.
- Score: 2.6819730646697972
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gradient Smoothing is an efficient approach to reducing noise in gradient-based model explanation method. SmoothGrad adds Gaussian noise to mitigate much of these noise. However, the crucial hyper-parameter in this method, the variance $\sigma$ of Gaussian noise, is set manually or with heuristic approach. However, it results in the smoothed gradients still containing a certain amount of noise. In this paper, we aim to interpret SmoothGrad as a corollary of convolution, thereby re-understanding the gradient noise and the role of $\sigma$ from the perspective of confidence level. Furthermore, we propose an adaptive gradient smoothing method, AdaptGrad, based on these insights. Through comprehensive experiments, both qualitative and quantitative results demonstrate that AdaptGrad could effectively reduce almost all the noise in vanilla gradients compared with baselines methods. AdaptGrad is simple and universal, making it applicable for enhancing gradient-based interpretability methods for better visualization.
Related papers
- Gradient Normalization with(out) Clipping Ensures Convergence of Nonconvex SGD under Heavy-Tailed Noise with Improved Results [60.92029979853314]
This paper investigates Gradient Normalization without (NSGDC) its gradient reduction variant (NSGDC-VR)
We present significant improvements in the theoretical results for both algorithms.
arXiv Detail & Related papers (2024-10-21T22:40:42Z) - A Learning Paradigm for Interpretable Gradients [9.074325843851726]
We present a novel training approach to improve the quality of gradients for interpretability.
We find that the resulting gradient is qualitatively less noisy and improves quantitatively the interpretability properties of different networks.
arXiv Detail & Related papers (2024-04-23T13:32:29Z) - Nesterov acceleration despite very noisy gradients [2.048226951354646]
We present a generalization of Nesterov's accelerated gradient descent algorithm.
AGNES achieves acceleration for smooth convex and strongly convex minimization tasks.
arXiv Detail & Related papers (2023-02-10T21:32:47Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - NoiseGrad: enhancing explanations by introducing stochasticity to model
weights [4.735227614605093]
NoiseGrad is a method-agnostic explanation-enhancing method that adds noise to the weights instead of the input data.
We investigate our proposed method through various experiments including different datasets.
arXiv Detail & Related papers (2021-06-18T15:22:33Z) - Guided Integrated Gradients: An Adaptive Path Method for Removing Noise [9.792727625917083]
Integrated Gradients (IG) is a commonly used feature attribution method for deep neural networks.
We show that one of the causes of the problem is the accumulation of noise along the IG path.
We propose adapting the attribution path itself -- conditioning the path not just on the image but also on the model being explained.
arXiv Detail & Related papers (2021-06-17T20:00:55Z) - Shape Matters: Understanding the Implicit Bias of the Noise Covariance [76.54300276636982]
Noise in gradient descent provides a crucial implicit regularization effect for training over parameterized models.
We show that parameter-dependent noise -- induced by mini-batches or label perturbation -- is far more effective than Gaussian noise.
Our analysis reveals that parameter-dependent noise introduces a bias towards local minima with smaller noise variance, whereas spherical Gaussian noise does not.
arXiv Detail & Related papers (2020-06-15T18:31:02Z) - Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient
Clipping [69.9674326582747]
We propose a new accelerated first-order method called clipped-SSTM for smooth convex optimization with heavy-tailed distributed noise in gradients.
We prove new complexity that outperform state-of-the-art results in this case.
We derive the first non-trivial high-probability complexity bounds for SGD with clipping without light-tails assumption on the noise.
arXiv Detail & Related papers (2020-05-21T17:05:27Z) - Understanding Integrated Gradients with SmoothTaylor for Deep Neural
Network Attribution [70.78655569298923]
Integrated Gradients as an attribution method for deep neural network models offers simple implementability.
It suffers from noisiness of explanations which affects the ease of interpretability.
The SmoothGrad technique is proposed to solve the noisiness issue and smoothen the attribution maps of any gradient-based attribution method.
arXiv Detail & Related papers (2020-04-22T10:43:19Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.