論文の概要: On the Generalization Properties of Deep Learning for Aircraft Fuel Flow Estimation Models
- arxiv url: http://arxiv.org/abs/2410.07717v1
- Date: Thu, 10 Oct 2024 08:34:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 15:15:56.754334
- Title: On the Generalization Properties of Deep Learning for Aircraft Fuel Flow Estimation Models
- Title(参考訳): 航空機燃料流量推定モデルにおけるディープラーニングの一般化特性について
- Authors: Gabriel Jarry, Ramon Dalmau, Philippe Very, Junzi Sun,
- Abstract要約: 本稿では,燃料消費予測におけるディープラーニングモデルの一般化能力について検討する。
本稿では,ニューラルネットワークアーキテクチャとドメイン一般化技術を統合する新しい手法を提案する。
以前は目に見えない航空機に対して、航空機へのノイズの導入とエンジンパラメーターはモデルの一般化を改善した。
- 参考スコア(独自算出の注目度): 2.7336487680215815
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Accurately estimating aircraft fuel flow is essential for evaluating new procedures, designing next-generation aircraft, and monitoring the environmental impact of current aviation practices. This paper investigates the generalization capabilities of deep learning models in predicting fuel consumption, focusing particularly on their performance for aircraft types absent from the training data. We propose a novel methodology that integrates neural network architectures with domain generalization techniques to enhance robustness and reliability across a wide range of aircraft. A comprehensive dataset containing 101 different aircraft types, separated into training and generalization sets, with each aircraft type set containing 1,000 flights. We employed the base of aircraft data (BADA) model for fuel flow estimates, introduced a pseudo-distance metric to assess aircraft type similarity, and explored various sampling strategies to optimize model performance in data-sparse regions. Our results reveal that for previously unseen aircraft types, the introduction of noise into aircraft and engine parameters improved model generalization. The model is able to generalize with acceptable mean absolute percentage error between 2\% and 10\% for aircraft close to existing aircraft, while performance is below 1\% error for known aircraft in the training set. This study highlights the potential of combining domain-specific insights with advanced machine learning techniques to develop scalable, accurate, and generalizable fuel flow estimation models.
- Abstract(参考訳): 航空機の燃料流量を正確に推定することは、新しい手順を評価し、次世代航空機を設計し、現在の航空慣行の環境影響を監視するために不可欠である。
本稿では, 深層学習モデルの燃料消費予測における一般化能力について検討し, 特に訓練データから欠落した航空機に対する性能に着目した。
本稿では,ニューラルネットワークアーキテクチャとドメイン一般化技術を融合して,幅広い航空機における堅牢性と信頼性を高める手法を提案する。
101種類の航空機を含む包括的データセットは、訓練と一般化セットに分離され、各航空機は1,000回の飛行を含む。
我々は, 燃料流量推定のための航空機データベース(BADA)モデルを用い, 航空機型類似性を評価するための擬似距離測定法を導入し, データ分散領域におけるモデル性能を最適化するための様々なサンプリング手法を探索した。
その結果,従来未確認の航空機では,航空機へのノイズ導入とエンジンパラメータの改善により,モデル一般化が改善された。
このモデルでは、既存の航空機に近い航空機では2\%から10\%の許容平均絶対パーセンテージ誤差で一般化でき、トレーニングセットで知られている航空機では1\%の誤差で性能が向上する。
この研究は、拡張性、正確性、一般化可能な燃料流量推定モデルを開発するために、ドメイン固有の洞察と高度な機械学習技術を組み合わせる可能性を強調した。
関連論文リスト
- Lory: Fully Differentiable Mixture-of-Experts for Autoregressive Language Model Pre-training [73.90260246781435]
私たちは、このようなアーキテクチャを自動回帰言語モデルに拡張する最初のアプローチであるLoryを紹介します。
パラメータマッチングされた高密度モデルよりも、多種多様な下流タスクにおいて顕著な性能向上を示す。
セグメントレベルのルーティングにもかかわらず、Loryモデルはトークンレベルのルーティングを備えた最先端のMoEモデルと比較して、競合的なパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-05-06T03:06:33Z) - An Integrated Imitation and Reinforcement Learning Methodology for
Robust Agile Aircraft Control with Limited Pilot Demonstration Data [3.3748750222488657]
本稿では,アジャイル航空機のデータ駆動操作生成モデルの構築手法を提案する。
提案手法は, 模倣学習, 伝達学習, 強化学習の技法を組み合わせて, この目的を達成する。
論文 参考訳(メタデータ) (2023-12-27T14:26:34Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
事前訓練されたモデルの任意のペアリングに対して、一方のモデルは他方では利用できない重要なデータコンテキストを抽出する。
このような「補的」な知識を,性能劣化を伴わずに,あるモデルから別のモデルへ伝達できるかどうかを検討する。
論文 参考訳(メタデータ) (2023-10-26T17:59:46Z) - Improved Aircraft Environmental Impact Segmentation via Metric Learning [1.6317061277457001]
この研究は、計量学習を用いて航空機の環境影響セグメンテーションのための重み付き距離メトリクスを学習する。
本研究は, 航空機の環境影響をよりよく反映して, 航空機のセグメンテーションの精度を高めることができることを示すものである。
論文 参考訳(メタデータ) (2023-06-24T01:14:48Z) - Inferring Traffic Models in Terminal Airspace from Flight Tracks and
Procedures [52.25258289718559]
本稿では,レーダ監視データから収集したプロシージャデータとフライトトラックから可変性を学習可能な確率モデルを提案する。
任意の航空機数を含む交通量を生成するために,ペアワイズモデルを用いる方法を示す。
論文 参考訳(メタデータ) (2023-03-17T13:58:06Z) - Data-Efficient Modeling for Precise Power Consumption Estimation of
Quadrotor Operations Using Ensemble Learning [3.722516004544342]
エレクトロニック・テイクオフ・アンド・ランディング (EVTOL) は、新興都市空力において主要な航空機であると考えられている。
本研究では,eVTOL航空機の消費電力モデル化のための枠組みを構築した。
そこで我々は,3種類の四重項の飛行記録を用いたデータ駆動モデルを構築するために,アンサンブル学習法,すなわち積み重ね法を用いた。
論文 参考訳(メタデータ) (2022-05-23T02:16:43Z) - Churn Reduction via Distillation [54.5952282395487]
本研究は, 基礎モデルを教師として用いた蒸留によるトレーニングと, 予測的チャーンに対する明示的な制約によるトレーニングとの等価性を示す。
次に, 蒸留が近年の多くのベースラインに対する低チャーン訓練に有効であることを示す。
論文 参考訳(メタデータ) (2021-06-04T18:03:31Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
深層学習と物理運動モデルを組み合わせたハイブリッドアプローチを提案する。
ハイブリッドモデルの一部として,ディープニューラルネットワークの出力範囲を制限することで,解釈可能性を実現する。
その結果, ハイブリッドモデルでは, 既存のディープラーニング手法に比べて精度を低下させることなく, モデル解釈性が向上できることがわかった。
論文 参考訳(メタデータ) (2021-03-11T15:21:08Z) - Data-driven Method for Estimating Aircraft Mass from Quick Access
Recorder using Aircraft Dynamics and Multilayer Perceptron Neural Network [4.828353666660018]
乗客と荷物を積載する航空機は、安全上の危険をもたらす可能性がある。
航空会社はこのツールを使って航空機のペイロードをよりよく利用することができる。
論文 参考訳(メタデータ) (2020-12-10T04:44:47Z) - From industry-wide parameters to aircraft-centric on-flight inference:
improving aeronautics performance prediction with machine learning [5.171090309853363]
航空機の性能モデルは、特に燃料効率の良い飛行計画において重要な役割を担っている。
実際には、メーカーは1つの要素のチューニングを通じて、航空機のライフサイクルを通してわずかに修正されたガイドラインを提供し、より良い燃料予測を可能にしている。
これは制限があり、特に航空機の性能に影響を及ぼすそれぞれの特徴の進化を反映していない。
本論文の重要な貢献は,航空機の飛行中に連続的に記録される大量のデータを活用するために,機械学習の利用を促進することである。
論文 参考訳(メタデータ) (2020-05-11T17:40:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。