Understanding Adversarially Robust Generalization via Weight-Curvature Index
- URL: http://arxiv.org/abs/2410.07719v1
- Date: Thu, 10 Oct 2024 08:34:43 GMT
- Title: Understanding Adversarially Robust Generalization via Weight-Curvature Index
- Authors: Yuelin Xu, Xiao Zhang,
- Abstract summary: We propose a novel perspective to decipher adversarially robust generalization through the lens of the Weight-Curvature Index (WCI)
The proposed WCI quantifies the vulnerability of models to adversarial perturbations using the Frobenius norm of weight matrices and the trace of Hessian matrices.
Our work provides crucial insights for designing more resilient deep learning models, enhancing their reliability and security.
- Score: 3.096869664709865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite extensive research on adversarial examples, the underlying mechanisms of adversarially robust generalization, a critical yet challenging task for deep learning, remain largely unknown. In this work, we propose a novel perspective to decipher adversarially robust generalization through the lens of the Weight-Curvature Index (WCI). The proposed WCI quantifies the vulnerability of models to adversarial perturbations using the Frobenius norm of weight matrices and the trace of Hessian matrices. We prove generalization bounds based on PAC-Bayesian theory and second-order loss function approximations to elucidate the interplay between robust generalization gap, model parameters, and loss landscape curvature. Our theory and experiments show that WCI effectively captures the robust generalization performance of adversarially trained models. By offering a nuanced understanding of adversarial robustness based on the scale of model parameters and the curvature of the loss landscape, our work provides crucial insights for designing more resilient deep learning models, enhancing their reliability and security.
Related papers
- A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Understanding Robust Overfitting from the Feature Generalization Perspective [61.770805867606796]
Adversarial training (AT) constructs robust neural networks by incorporating adversarial perturbations into natural data.
It is plagued by the issue of robust overfitting (RO), which severely damages the model's robustness.
In this paper, we investigate RO from a novel feature generalization perspective.
arXiv Detail & Related papers (2023-10-01T07:57:03Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
We propose a novel doubly-robust instance reweighted adversarial framework.
Our importance weights are obtained by optimizing the KL-divergence regularized loss function.
Our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance.
arXiv Detail & Related papers (2023-08-01T06:16:18Z) - Sparsity-aware generalization theory for deep neural networks [12.525959293825318]
We present a new approach to analyzing generalization for deep feed-forward ReLU networks.
We show fundamental trade-offs between sparsity and generalization.
arXiv Detail & Related papers (2023-07-01T20:59:05Z) - Provable Generalization of Overparameterized Meta-learning Trained with
SGD [62.892930625034374]
We study the generalization of a widely used meta-learning approach, Model-Agnostic Meta-Learning (MAML)
We provide both upper and lower bounds for the excess risk of MAML, which captures how SGD dynamics affect these generalization bounds.
Our theoretical findings are further validated by experiments.
arXiv Detail & Related papers (2022-06-18T07:22:57Z) - Building Robust Ensembles via Margin Boosting [98.56381714748096]
In adversarial robustness, a single model does not usually have enough power to defend against all possible adversarial attacks.
We develop an algorithm for learning an ensemble with maximum margin.
We show that our algorithm not only outperforms existing ensembling techniques, but also large models trained in an end-to-end fashion.
arXiv Detail & Related papers (2022-06-07T14:55:58Z) - Self-Ensemble Adversarial Training for Improved Robustness [14.244311026737666]
Adversarial training is the strongest strategy against various adversarial attacks among all sorts of defense methods.
Recent works mainly focus on developing new loss functions or regularizers, attempting to find the unique optimal point in the weight space.
We devise a simple but powerful emphSelf-Ensemble Adversarial Training (SEAT) method for yielding a robust classifier by averaging weights of history models.
arXiv Detail & Related papers (2022-03-18T01:12:18Z) - The curse of overparametrization in adversarial training: Precise
analysis of robust generalization for random features regression [34.35440701530876]
We show that for adversarially trained random features models, high overparametrization can hurt robust generalization.
Our developed theory reveals the nontrivial effect of overparametrization on robustness and indicates that for adversarially trained random features models, high overparametrization can hurt robust generalization.
arXiv Detail & Related papers (2022-01-13T18:57:30Z) - Formalizing Generalization and Robustness of Neural Networks to Weight
Perturbations [58.731070632586594]
We provide the first formal analysis for feed-forward neural networks with non-negative monotone activation functions against weight perturbations.
We also design a new theory-driven loss function for training generalizable and robust neural networks against weight perturbations.
arXiv Detail & Related papers (2021-03-03T06:17:03Z) - Adversarially Robust Estimate and Risk Analysis in Linear Regression [17.931533943788335]
Adversarially robust learning aims to design algorithms that are robust to small adversarial perturbations on input variables.
By discovering the statistical minimax rate of convergence of adversarially robust estimators, we emphasize the importance of incorporating model information.
We propose a straightforward two-stage adversarial learning framework, which facilitates to utilize model structure information to improve adversarial robustness.
arXiv Detail & Related papers (2020-12-18T14:55:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.