論文の概要: Towards Trustworthy Web Attack Detection: An Uncertainty-Aware Ensemble Deep Kernel Learning Model
- arxiv url: http://arxiv.org/abs/2410.07725v1
- Date: Thu, 10 Oct 2024 08:47:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 15:15:56.744256
- Title: Towards Trustworthy Web Attack Detection: An Uncertainty-Aware Ensemble Deep Kernel Learning Model
- Title(参考訳): 信頼に値するWeb攻撃検出に向けて--深層カーネル学習モデルによる不確実性認識
- Authors: Yonghang Zhou, Hongyi Zhu, Yidong Chai, Yuanchun Jiang, Yezheng Liu,
- Abstract要約: 本稿では,Web攻撃を検出するために,不確実性を意識したEnsemble Deep Kernel Learning(UEDKL)モデルを提案する。
提案したUEDKLは、ディープカーネル学習モデルを用いて、通常のHTTPリクエストと異なるタイプのWeb攻撃を区別する。
BDCIとSRBHデータセットの実験により、提案したUEDKLフレームワークは、Web攻撃検出性能と不確実性推定品質の両方に大きな改善をもたらすことが示された。
- 参考スコア(独自算出の注目度): 4.791983040541727
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Web attacks are one of the major and most persistent forms of cyber threats, which bring huge costs and losses to web application-based businesses. Various detection methods, such as signature-based, machine learning-based, and deep learning-based, have been proposed to identify web attacks. However, these methods either (1) heavily rely on accurate and complete rule design and feature engineering, which may not adapt to fast-evolving attacks, or (2) fail to estimate model uncertainty, which is essential to the trustworthiness of the prediction made by the model. In this study, we proposed an Uncertainty-aware Ensemble Deep Kernel Learning (UEDKL) model to detect web attacks from HTTP request payload data with the model uncertainty captured from the perspective of both data distribution and model parameters. The proposed UEDKL utilizes a deep kernel learning model to distinguish normal HTTP requests from different types of web attacks with model uncertainty estimated from data distribution perspective. Multiple deep kernel learning models were trained as base learners to capture the model uncertainty from model parameters perspective. An attention-based ensemble learning approach was designed to effectively integrate base learners' predictions and model uncertainty. We also proposed a new metric named High Uncertainty Ratio-F Score Curve to evaluate model uncertainty estimation. Experiments on BDCI and SRBH datasets demonstrated that the proposed UEDKL framework yields significant improvement in both web attack detection performance and uncertainty estimation quality compared to benchmark models.
- Abstract(参考訳): Web攻撃は、Webアプリケーションベースのビジネスに大きなコストと損失をもたらす、サイバー脅威の主要かつ最も永続的な形態の1つである。
署名ベース、機械学習ベース、ディープラーニングベースといった様々な検出手法が、Web攻撃を特定するために提案されている。
しかし,これらの手法は,(1)高速に進行する攻撃に適応できないような,正確かつ完全なルール設計と特徴工学に強く依存するか,(2)モデルによる予測の信頼性に不可欠なモデル不確実性を推定できないかのいずれかである。
本研究では,HTTP要求ペイロードデータからのWeb攻撃を,データ分散とモデルパラメータの両方の観点から捉えたモデル不確実性によって検出する,不確実性を考慮した深層カーネル学習(UEDKL)モデルを提案する。
提案したUEDKLは深層カーネル学習モデルを用いて,データ分散の観点から推定したモデル不確実性を用いて,異なるタイプのWeb攻撃から通常のHTTP要求を識別する。
複数の深層カーネル学習モデルをベースラーナーとして訓練し、モデルパラメータの観点からモデルの不確実性を捉える。
注意に基づくアンサンブル学習手法は,基礎学習者の予測を効果的に統合し,不確実性をモデル化する。
また,モデル不確実性評価を行うために,高不確かさ比Fスコア曲線という新しい指標を提案した。
BDCIとSRBHデータセットの実験により、提案したUEDKLフレームワークは、ベンチマークモデルと比較してWeb攻撃検出性能と不確実性推定品質の両方において、大幅な改善をもたらすことが示された。
関連論文リスト
- Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - MisGUIDE : Defense Against Data-Free Deep Learning Model Extraction [0.8437187555622164]
MisGUIDE(ミスGUIDE)は、ディープラーニングモデルのための2段階の防御フレームワークである。
提案手法の目的は,真正クエリの精度を維持しつつ,クローンモデルの精度を下げることである。
論文 参考訳(メタデータ) (2024-03-27T13:59:21Z) - Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
本稿では、利用可能なデータからシステムダイナミクスを推定し、仮想モデルロールアウトにおけるポリシー最適化を行うモデルベース強化学習アルゴリズムについて考察する。
このアプローチは、実際のシステムで破滅的な失敗を引き起こす可能性のあるモデルエラーを悪用することに対して脆弱である。
D4RLベンチマークの1つのよく校正された自己回帰モデルにより、より良い性能が得られることを示す。
論文 参考訳(メタデータ) (2024-02-05T10:18:15Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
敵対的訓練(AT)は、ディープラーニングモデルの堅牢性を固める上で重要な要素である。
AT方式は、目標モデルの防御のために直接反復的な更新を頼りにしており、不安定な訓練や破滅的なオーバーフィッティングといった障害に頻繁に遭遇する。
汎用プロキシガイド型防衛フレームワークLAST(bf Pbf astから学ぶ)を提案する。
論文 参考訳(メタデータ) (2023-10-19T13:13:41Z) - Boosting Model Inversion Attacks with Adversarial Examples [26.904051413441316]
ブラックボックス設定において、より高い攻撃精度を達成できる学習ベースモデル反転攻撃のための新しい訓練パラダイムを提案する。
まず,攻撃モデルの学習過程を,意味的損失関数を追加して規則化する。
第2に、学習データに逆例を注入し、クラス関連部の多様性を高める。
論文 参考訳(メタデータ) (2023-06-24T13:40:58Z) - ALUM: Adversarial Data Uncertainty Modeling from Latent Model
Uncertainty Compensation [25.67258563807856]
本稿では,モデル不確実性とデータ不確実性を扱うALUMという新しい手法を提案する。
提案するALUMはモデルに依存しないため,オーバーヘッドの少ない既存のディープモデルに容易に実装できる。
論文 参考訳(メタデータ) (2023-03-29T17:24:12Z) - DST: Dynamic Substitute Training for Data-free Black-box Attack [79.61601742693713]
そこで本研究では,対象モデルからより高速に学習するための代用モデルの促進を目的とした,新しい動的代用トレーニング攻撃手法を提案する。
タスク駆動型グラフに基づく構造情報学習の制約を導入し、生成したトレーニングデータの質を向上させる。
論文 参考訳(メタデータ) (2022-04-03T02:29:11Z) - CC-Cert: A Probabilistic Approach to Certify General Robustness of
Neural Networks [58.29502185344086]
安全クリティカルな機械学習アプリケーションでは、モデルを敵の攻撃から守ることが不可欠である。
意味的に意味のある入力変換に対して、ディープラーニングモデルの証明可能な保証を提供することが重要である。
我々はChernoff-Cramer境界に基づく新しい普遍確率的証明手法を提案する。
論文 参考訳(メタデータ) (2021-09-22T12:46:04Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - A Deep Marginal-Contrastive Defense against Adversarial Attacks on 1D
Models [3.9962751777898955]
ディープラーニングアルゴリズムは最近、脆弱性のために攻撃者がターゲットとしている。
非連続的深層モデルは、いまだに敵対的な攻撃に対して頑健ではない。
本稿では,特徴を特定のマージン下に置くことによって予測を容易にする新しい目的/損失関数を提案する。
論文 参考訳(メタデータ) (2020-12-08T20:51:43Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。