論文の概要: StepTool: A Step-grained Reinforcement Learning Framework for Tool Learning in LLMs
- arxiv url: http://arxiv.org/abs/2410.07745v1
- Date: Thu, 10 Oct 2024 09:23:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 15:15:56.727445
- Title: StepTool: A Step-grained Reinforcement Learning Framework for Tool Learning in LLMs
- Title(参考訳): StepTool: LLMにおけるツール学習のためのステップグレード強化学習フレームワーク
- Authors: Yuanqing Yu, Zhefan Wang, Weizhi Ma, Zhicheng Guo, Jingtao Zhan, Shuai Wang, Chuhan Wu, Zhiqiang Guo, Min Zhang,
- Abstract要約: 我々は,大規模言語モデルにおけるツール学習を改善するための,段階的な強化学習フレームワークであるStepToolを紹介する。
StepToolは、既存のメソッドを多段階のツールベースのタスクで大幅に上回っている。
- 参考スコア(独自算出の注目度): 44.906714156993694
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite having powerful reasoning and inference capabilities, Large Language Models (LLMs) still need external tools to acquire real-time information retrieval or domain-specific expertise to solve complex tasks, which is referred to as tool learning. Existing tool learning methods primarily rely on tuning with expert trajectories, focusing on token-sequence learning from a linguistic perspective. However, there are several challenges: 1) imitating static trajectories limits their ability to generalize to new tasks. 2) even expert trajectories can be suboptimal, and better solution paths may exist. In this work, we introduce StepTool, a novel step-grained reinforcement learning framework to improve tool learning in LLMs. It consists of two components: Step-grained Reward Shaping, which assigns rewards at each tool interaction based on tool invocation success and its contribution to the task, and Step-grained Optimization, which uses policy gradient methods to optimize the model in a multi-step manner. Experimental results demonstrate that StepTool significantly outperforms existing methods in multi-step, tool-based tasks, providing a robust solution for complex task environments. Codes are available at https://github.com/yuyq18/StepTool.
- Abstract(参考訳): 強力な推論機能と推論機能を備えているにもかかわらず、Large Language Models (LLM)は、ツール学習と呼ばれる複雑なタスクを解決するために、リアルタイム情報検索やドメイン固有の専門知識を取得するために、外部ツールが必要である。
既存のツール学習手法は主に専門家の軌跡のチューニングに頼っており、言語学的観点からトークンシーケンス学習に重点を置いている。
しかし、いくつかの課題がある。
1) 静的軌道の模倣は,新しいタスクに一般化する能力を制限する。
2) 専門家の軌跡でさえ最適以下であり, より良い解経路が存在する可能性がある。
本稿では,LSMにおけるツール学習を改善するための,段階的な強化学習フレームワークであるStepToolを紹介する。
ツールの実行の成功とタスクへのコントリビューションに基づいて、各ツールのインタラクションに報酬を割り当てるStep-grained Reward Shapingと、モデルを多段階的に最適化するためにポリシー勾配メソッドを使用するStep-grained Optimizationの2つのコンポーネントで構成されている。
実験の結果,StepToolはマルチステップのツールベースのタスクにおいて既存のメソッドを著しく上回り,複雑なタスク環境に対して堅牢なソリューションを提供することがわかった。
コードはhttps://github.com/yuyq18/StepTool.comで入手できる。
関連論文リスト
- From Exploration to Mastery: Enabling LLMs to Master Tools via Self-Driven Interactions [60.733557487886635]
本稿では,大規模言語モデルと外部ツールとの包括的ギャップを埋めることに焦点を当てる。
ツール文書の動的精錬を目的とした新しいフレームワーク DRAFT を提案する。
複数のデータセットに対する大規模な実験は、DRAFTの反復的なフィードバックベースの改善がドキュメントの品質を大幅に改善することを示している。
論文 参考訳(メタデータ) (2024-10-10T17:58:44Z) - ToolGen: Unified Tool Retrieval and Calling via Generation [34.34787641393914]
ToolGenは、ツール知識を大きな言語モデルのパラメータに直接統合するパラダイムシフトです。
ToolGenは、ツール検索と自律タスク補完の両方において、優れた結果が得られることを示す。
ToolGenは、より汎用的で効率的で自律的なAIシステムを実現する。
論文 参考訳(メタデータ) (2024-10-04T13:52:32Z) - LLM With Tools: A Survey [0.0]
本稿では,LCMに外部ツールの使用を教える領域における方法論,問題点,展開について述べる。
ユーザ命令を実行可能なプランにマッピングする一連の関数によってガイドされるツール統合のための標準化パラダイムを導入する。
調査の結果,ツール起動タイミング,選択精度,堅牢な推論プロセスの必要性など,さまざまな課題が明らかになった。
論文 参考訳(メタデータ) (2024-09-24T14:08:11Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain(ATC)は、大規模言語モデル(LLM)がマルチツールユーザとして機能することを可能にするフレームワークである。
次に,ツールの範囲を拡大するために,ブラックボックス探索法を提案する。
包括的な評価のために、ToolFlowという挑戦的なベンチマークを構築しました。
論文 参考訳(メタデータ) (2024-05-26T11:40:58Z) - Towards Completeness-Oriented Tool Retrieval for Large Language Models [60.733557487886635]
現実世界のシステムは多種多様なツールを組み込んでおり、全てのツールを大規模言語モデルに入力することは不可能である。
既存のツール検索手法は主にユーザクエリとツール記述間のセマンティックマッチングに焦点を当てている。
我々は,ユーザクエリとツール記述のセマンティックな類似性だけでなく,ツールの協調的情報も考慮した,新しいモデル診断型協調学習型ツール検索手法であるCOLTを提案する。
論文 参考訳(メタデータ) (2024-05-25T06:41:23Z) - EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction [56.02100384015907]
EasyToolは、多種多様で長いツールドキュメントを統一的で簡潔なツール命令に変換するフレームワークである。
トークン使用量を大幅に削減し、現実のシナリオにおけるツール利用のパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2024-01-11T15:45:11Z) - Confucius: Iterative Tool Learning from Introspection Feedback by
Easy-to-Difficult Curriculum [42.36892453363961]
本研究では,大規模言語モデル(LLM)を学習し,現実のシナリオで複雑なツールを使用するための新しいツール学習フレームワークを提案する。
まず,多段階の学習手法を提案する。
次に、イントロスペクティブフィードバックからの反復自己インストラクションを提案し、データセットを動的に構築し、複雑なツールを使用する能力を改善する。
論文 参考訳(メタデータ) (2023-08-27T07:53:00Z) - Large Language Models as Tool Makers [85.00361145117293]
我々はLLM A s Tool Makers (LATM) と呼ばれるクローズドループフレームワークを導入する。
ツール作成: 1 つのツール作成: LLM がタスクセットのためのツールを作成するツールメーカとして機能する 2 つのツール使用: 別の LLM がツールユーザとして機能し、ツールメーカが問題解決のために構築したツールを適用する。
論文 参考訳(メタデータ) (2023-05-26T17:50:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。