論文の概要: HARIVO: Harnessing Text-to-Image Models for Video Generation
- arxiv url: http://arxiv.org/abs/2410.07763v1
- Date: Thu, 10 Oct 2024 09:47:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 15:06:11.520540
- Title: HARIVO: Harnessing Text-to-Image Models for Video Generation
- Title(参考訳): HARIVO:映像生成のためのテキスト・イメージ・モデル
- Authors: Mingi Kwon, Seoung Wug Oh, Yang Zhou, Difan Liu, Joon-Young Lee, Haoran Cai, Baqiao Liu, Feng Liu, Youngjung Uh,
- Abstract要約: 本稿では,事前学習されたテキスト・ツー・イメージ(T2I)モデルから拡散に基づく映像モデルを作成する手法を提案する。
鍵となる革新は、時間的滑らか性のための新しい損失関数と緩和勾配サンプリング技術である。
凍結したStableDiffusionモデルに基づいて構築され、トレーニングプロセスを単純化し、ControlNetやDreamBoothといった市販モデルとのシームレスな統合を可能にします。
- 参考スコア(独自算出の注目度): 45.63338167699105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a method to create diffusion-based video models from pretrained Text-to-Image (T2I) models. Recently, AnimateDiff proposed freezing the T2I model while only training temporal layers. We advance this method by proposing a unique architecture, incorporating a mapping network and frame-wise tokens, tailored for video generation while maintaining the diversity and creativity of the original T2I model. Key innovations include novel loss functions for temporal smoothness and a mitigating gradient sampling technique, ensuring realistic and temporally consistent video generation despite limited public video data. We have successfully integrated video-specific inductive biases into the architecture and loss functions. Our method, built on the frozen StableDiffusion model, simplifies training processes and allows for seamless integration with off-the-shelf models like ControlNet and DreamBooth. project page: https://kwonminki.github.io/HARIVO
- Abstract(参考訳): 本稿では,事前学習されたテキスト・ツー・イメージ(T2I)モデルから拡散に基づく映像モデルを作成する手法を提案する。
AnimateDiff氏は最近、時間層のみをトレーニングしながらT2Iモデルを凍結することを提案した。
我々は、独自のアーキテクチャを提案し、オリジナルのT2Iモデルの多様性と創造性を保ちながら、ビデオ生成に適したマッピングネットワークとフレームワイズトークンを組み込んだ。
主要なイノベーションは、時間的滑らか性のための新規な損失関数と緩和勾配サンプリング技術であり、公開ビデオデータに制限があるにもかかわらず、現実的で時間的に一貫したビデオ生成を保証する。
アーキテクチャと損失関数にビデオ固有の帰納バイアスを組み込むことに成功しました。
凍結したStableDiffusionモデルに基づいて構築され、トレーニングプロセスを単純化し、ControlNetやDreamBoothといった市販モデルとのシームレスな統合を可能にします。
プロジェクトページ:https://kwonminki.github.io/HARIVO
関連論文リスト
- VideoGuide: Improving Video Diffusion Models without Training Through a Teacher's Guide [48.22321420680046]
VideoGuideは、事前訓練されたテキスト・ツー・ビデオ(T2V)モデルの時間的一貫性を高める新しいフレームワークである。
ガイドモデルの復調標本をサンプリングモデルの復調過程に補間することにより、時間的品質を向上させる。
提案手法は時間的一貫性と画像の忠実度を大幅に向上させる。
論文 参考訳(メタデータ) (2024-10-06T05:46:17Z) - WildVidFit: Video Virtual Try-On in the Wild via Image-Based Controlled Diffusion Models [132.77237314239025]
ビデオ仮想トライオンは、衣料品のアイデンティティを維持し、ソースビデオにおける人のポーズと身体の形に適応する現実的なシーケンスを生成することを目的としている。
従来の画像ベースの手法は、ワープとブレンディングに依存しており、複雑な人間の動きや閉塞に苦しむ。
衣料品の説明や人間の動きを条件とした映像生成のプロセスとして,映像試行を再認識する。
私たちのソリューションであるWildVidFitは、画像ベースで制御された拡散モデルを用いて、一段階の合理化を図っている。
論文 参考訳(メタデータ) (2024-07-15T11:21:03Z) - ZeroSmooth: Training-free Diffuser Adaptation for High Frame Rate Video Generation [81.90265212988844]
本稿では,プラグイン・アンド・プレイ方式で生成ビデオモデルを作成するためのトレーニング不要なビデオ手法を提案する。
我々は,映像モデルを隠れ状態補正モジュールを備えた自己カスケード映像拡散モデルに変換する。
私たちのトレーニングフリーの手法は、巨大な計算リソースと大規模データセットによってサポートされているトレーニングモデルにさえ匹敵するものです。
論文 参考訳(メタデータ) (2024-06-03T00:31:13Z) - Photorealistic Video Generation with Diffusion Models [44.95407324724976]
W.A.L.T.は拡散モデリングによるビデオ生成のためのトランスフォーマーベースのアプローチである。
我々は因果エンコーダを用いて、統一された潜在空間内で画像とビデオを共同で圧縮し、モダリティ間のトレーニングと生成を可能にする。
また,基本潜時ビデオ拡散モデルと2つのビデオ超解像拡散モデルからなるテキスト・ビデオ生成タスクのための3つのモデルのカスケードをトレーニングし,毎秒8ドルフレームで512倍の解像度の動画を生成する。
論文 参考訳(メタデータ) (2023-12-11T18:59:57Z) - BIVDiff: A Training-Free Framework for General-Purpose Video Synthesis via Bridging Image and Video Diffusion Models [40.73982918337828]
本稿では,bf BIVDiffと呼ばれるトレーニング不要な汎用ビデオ合成フレームワークを提案する。
具体的には、まず、フレームワイドビデオ生成に特定の画像拡散モデル(例えば、ControlNetとInstruct Pix2Pix)を使用し、その後、生成されたビデオ上でMixed Inversionを行い、最後に、反転潜時をビデオ拡散モデルに入力する。
論文 参考訳(メタデータ) (2023-12-05T14:56:55Z) - ART$\boldsymbol{\cdot}$V: Auto-Regressive Text-to-Video Generation with
Diffusion Models [99.84195819571411]
ART$boldsymbolcdot$Vは拡散モデルを用いた自動回帰ビデオ生成のための効率的なフレームワークである。
隣接するフレーム間の単純な連続的な動きしか学ばない。
様々なプロンプトで調整された、任意に長いビデオを生成することができる。
論文 参考訳(メタデータ) (2023-11-30T18:59:47Z) - Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large
Datasets [36.95521842177614]
本稿では,高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細映像・高精細映像・高精細・高精細・高精細・高精細・高精細・高精細
我々は,テキスト・ツー・イメージ・プレトレーニング,ビデオ・プレトレーニング,高品質ビデオファインタニングの3つの異なる段階を同定し,評価する。
論文 参考訳(メタデータ) (2023-11-25T22:28:38Z) - LAMP: Learn A Motion Pattern for Few-Shot-Based Video Generation [44.220329202024494]
我々は,1つのGPU上で816本の動画でテキストから画像への拡散モデルを学習する,数ショットベースのチューニングフレームワーク LAMP を提案する。
具体的には,コンテンツ生成のための既製のテキスト・ツー・イメージモデルを用いて,第1フレーム条件のパイプラインを設計する。
時間次元の特徴を捉えるため、T2Iモデルの事前訓練された2次元畳み込み層を、新しい時間空間運動学習層に拡張する。
論文 参考訳(メタデータ) (2023-10-16T19:03:19Z) - SimDA: Simple Diffusion Adapter for Efficient Video Generation [102.90154301044095]
本稿では,強力なT2Iモデルの1.1Bパラメータのうち24Mしか微調整せず,パラメータ効率のよいビデオ生成に適応できる簡易拡散適応器(SimDA)を提案する。
野生でのT2V生成に加えて、SimDAは2分間のチューニングでワンショットビデオ編集にも使えるようになった。
論文 参考訳(メタデータ) (2023-08-18T17:58:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。