Fine-Tuning Language Models for Ethical Ambiguity: A Comparative Study of Alignment with Human Responses
- URL: http://arxiv.org/abs/2410.07826v1
- Date: Thu, 10 Oct 2024 11:24:04 GMT
- Title: Fine-Tuning Language Models for Ethical Ambiguity: A Comparative Study of Alignment with Human Responses
- Authors: Pranav Senthilkumar, Visshwa Balasubramanian, Prisha Jain, Aneesa Maity, Jonathan Lu, Kevin Zhu,
- Abstract summary: Language models often misinterpret human intentions due to their handling of ambiguity.
We show that human and LLM judgments are poorly aligned in morally ambiguous contexts.
Our fine-tuning approach, which improves the model's understanding of text distributions in a text-to-text format, effectively enhances performance and alignment.
- Score: 1.566834021297545
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language models often misinterpret human intentions due to their handling of ambiguity, a limitation well-recognized in NLP research. While morally clear scenarios are more discernible to LLMs, greater difficulty is encountered in morally ambiguous contexts. In this investigation, we explored LLM calibration to show that human and LLM judgments are poorly aligned in such scenarios. We used two curated datasets from the Scruples project for evaluation: DILEMMAS, which involves pairs of distinct moral scenarios to assess the model's ability to compare and contrast ethical situations, and ANECDOTES, which presents individual narratives to evaluate the model's skill in drawing out details, interpreting, and analyzing distinct moral scenarios. Model answer probabilities were extracted for all possible choices and compared with human annotations to benchmark the alignment of three models: Llama-3.1-8b, Zephyr-7b-beta, and Mistral-7b. Significant improvements were observed after fine-tuning, with notable enhancements in both cross-entropy and Dirichlet scores, particularly in the latter. Notably, after fine-tuning, the performance of Mistral-7B-Instruct-v0.3 was on par with GPT-4o. However, the experimental models that were examined were all still outperformed by the BERT and RoBERTa models in terms of cross-entropy scores. Our fine-tuning approach, which improves the model's understanding of text distributions in a text-to-text format, effectively enhances performance and alignment in complex decision-making contexts, underscoring the need for further research to refine ethical reasoning techniques and capture human judgment nuances.
Related papers
- Self-Rationalization in the Wild: A Large Scale Out-of-Distribution Evaluation on NLI-related tasks [59.47851630504264]
Free-text explanations are expressive and easy to understand, but many datasets lack annotated explanation data.
We fine-tune T5-Large and OLMo-7B models and assess the impact of fine-tuning data quality, the number of fine-tuning samples, and few-shot selection methods.
The models are evaluated on 19 diverse OOD datasets across three tasks: natural language inference (NLI), fact-checking, and hallucination detection in abstractive summarization.
arXiv Detail & Related papers (2025-02-07T10:01:32Z) - Unraveling the Capabilities of Language Models in News Summarization [0.0]
This work provides a comprehensive benchmarking of 20 recent language models, focusing on smaller ones for the news summarization task.
We focus in this study on zero-shot and few-shot learning settings and we apply a robust evaluation methodology.
We highlight the exceptional performance of GPT-3.5-Turbo and GPT-4, which generally dominate due to their advanced capabilities.
arXiv Detail & Related papers (2025-01-30T04:20:16Z) - Weak-eval-Strong: Evaluating and Eliciting Lateral Thinking of LLMs with Situation Puzzles [20.18736445118689]
We introduce SPLAT, a benchmark leveraging Situation Puzzles to evaluate and elicit lateral thinking of Large Language Models (LLMs)
This benchmark, containing 975 graded situation puzzles across three difficulty levels, employs a new multi-turn player-judge framework instead of the traditional model-based evaluation.
Experiments demonstrate that a robust evaluation model, such as WizardLM-2, closely matches human judgements in both intermediate question-answering and final scenario accuracy.
arXiv Detail & Related papers (2024-10-09T10:09:11Z) - Learning to Refine with Fine-Grained Natural Language Feedback [81.70313509881315]
We propose looking at refinement with feedback as a composition of three distinct LLM competencies.
A key property of the proposed Detect, Critique, Refine ("DCR") method is that the step 2 critique model can give fine-grained feedback about errors.
We show that models of different capabilities benefit from refining with DCR on the task of improving factual consistency of document grounded summaries.
arXiv Detail & Related papers (2024-07-02T16:15:01Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
We propose a new evaluation method, SQC-Score.
Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score.
Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics.
arXiv Detail & Related papers (2024-04-04T15:36:53Z) - A Comprehensive Evaluation and Analysis Study for Chinese Spelling Check [53.152011258252315]
We show that using phonetic and graphic information reasonably is effective for Chinese Spelling Check.
Models are sensitive to the error distribution of the test set, which reflects the shortcomings of models.
The commonly used benchmark, SIGHAN, can not reliably evaluate models' performance.
arXiv Detail & Related papers (2023-07-25T17:02:38Z) - Training Language Models with Language Feedback at Scale [50.70091340506957]
We introduce learning from Language Feedback (ILF), a new approach that utilizes more informative language feedback.
ILF consists of three steps that are applied iteratively: first, conditioning the language model on the input, an initial LM output, and feedback to generate refinements.
We show theoretically that ILF can be viewed as Bayesian Inference, similar to Reinforcement Learning from human feedback.
arXiv Detail & Related papers (2023-03-28T17:04:15Z) - To what extent do human explanations of model behavior align with actual
model behavior? [91.67905128825402]
We investigated the extent to which human-generated explanations of models' inference decisions align with how models actually make these decisions.
We defined two alignment metrics that quantify how well natural language human explanations align with model sensitivity to input words.
We find that a model's alignment with human explanations is not predicted by the model's accuracy on NLI.
arXiv Detail & Related papers (2020-12-24T17:40:06Z) - Evaluating Text Coherence at Sentence and Paragraph Levels [17.99797111176988]
We investigate the adaptation of existing sentence ordering methods to a paragraph ordering task.
We also compare the learnability and robustness of existing models by artificially creating mini datasets and noisy datasets.
We conclude that the recurrent graph neural network-based model is an optimal choice for coherence modeling.
arXiv Detail & Related papers (2020-06-05T03:31:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.