A note on the VC dimension of 1-dimensional GNNs
- URL: http://arxiv.org/abs/2410.07829v1
- Date: Thu, 10 Oct 2024 11:33:15 GMT
- Title: A note on the VC dimension of 1-dimensional GNNs
- Authors: Noah Daniƫls, Floris Geerts,
- Abstract summary: Graph Neural Networks (GNNs) have become an essential tool for analyzing graph-structured data.
This paper focuses on the generalization of GNNs by investigating their Vapnik-Chervonenkis (VC) dimension.
- Score: 6.0757501646966965
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have become an essential tool for analyzing graph-structured data, leveraging their ability to capture complex relational information. While the expressivity of GNNs, particularly their equivalence to the Weisfeiler-Leman (1-WL) isomorphism test, has been well-documented, understanding their generalization capabilities remains critical. This paper focuses on the generalization of GNNs by investigating their Vapnik-Chervonenkis (VC) dimension. We extend previous results to demonstrate that 1-dimensional GNNs with a single parameter have an infinite VC dimension for unbounded graphs. Furthermore, we show that this also holds for GNNs using analytic non-polynomial activation functions, including the 1-dimensional GNNs that were recently shown to be as expressive as the 1-WL test. These results suggest inherent limitations in the generalization ability of even the most simple GNNs, when viewed from the VC dimension perspective.
Related papers
- Generalization of Graph Neural Networks is Robust to Model Mismatch [84.01980526069075]
Graph neural networks (GNNs) have demonstrated their effectiveness in various tasks supported by their generalization capabilities.
In this paper, we examine GNNs that operate on geometric graphs generated from manifold models.
Our analysis reveals the robustness of the GNN generalization in the presence of such model mismatch.
arXiv Detail & Related papers (2024-08-25T16:00:44Z) - A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
We take a manifold perspective to establish the statistical generalization theory of GNNs on graphs sampled from a manifold in the spectral domain.
We prove that the generalization bounds of GNNs decrease linearly with the size of the graphs in the logarithmic scale, and increase linearly with the spectral continuity constants of the filter functions.
arXiv Detail & Related papers (2024-06-07T19:25:02Z) - VC dimension of Graph Neural Networks with Pfaffian activation functions [4.141514895639094]
Graph Neural Networks (GNNs) have emerged in recent years as a powerful tool to learn tasks across a wide range of graph domains.
The aim of our work is to extend this analysis on the VC dimension of GNNs to other commonly used activation functions, such as sigmoid and hyperbolic tangent.
arXiv Detail & Related papers (2024-01-22T21:11:22Z) - Graph Neural Networks are Inherently Good Generalizers: Insights by
Bridging GNNs and MLPs [71.93227401463199]
This paper pinpoints the major source of GNNs' performance gain to their intrinsic capability, by introducing an intermediate model class dubbed as P(ropagational)MLP.
We observe that PMLPs consistently perform on par with (or even exceed) their GNN counterparts, while being much more efficient in training.
arXiv Detail & Related papers (2022-12-18T08:17:32Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
Graph neural networks (GNNs) are effective models for representation learning on relational data.
Standard GNNs are limited in their expressive power, as they cannot distinguish beyond the capability of the Weisfeiler-Leman graph isomorphism.
In this work, we analyze the expressive power of GNNs with random node (RNI)
We prove that these models are universal, a first such result for GNNs not relying on computationally demanding higher-order properties.
arXiv Detail & Related papers (2020-10-02T19:53:05Z) - Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs [95.63153473559865]
Graph Neural Networks (GNNs) are emerging machine learning models on graphs.
Most existing GNN models in practice are shallow and essentially feature-centric.
We show empirically and analytically that the existing shallow GNNs cannot preserve graph structures well.
We propose Eigen-GNN, a plug-in module to boost GNNs ability in preserving graph structures.
arXiv Detail & Related papers (2020-06-08T02:47:38Z) - Generalization and Representational Limits of Graph Neural Networks [46.20253808402385]
We prove that several important graph properties cannot be computed by graph neural networks (GNNs) that rely entirely on local information.
We provide the first data dependent generalization bounds for message passing GNNs.
Our bounds are much tighter than existing VC-dimension based guarantees for GNNs, and are comparable to Rademacher bounds for recurrent neural networks.
arXiv Detail & Related papers (2020-02-14T18:10:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.