Offline Hierarchical Reinforcement Learning via Inverse Optimization
- URL: http://arxiv.org/abs/2410.07933v1
- Date: Thu, 10 Oct 2024 14:00:21 GMT
- Title: Offline Hierarchical Reinforcement Learning via Inverse Optimization
- Authors: Carolin Schmidt, Daniele Gammelli, James Harrison, Marco Pavone, Filipe Rodrigues,
- Abstract summary: OHIO is a framework for offline reinforcement learning of hierarchical policies.
We show it substantially outperforms end-to-end RL methods and improves robustness.
- Score: 23.664330010602708
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hierarchical policies enable strong performance in many sequential decision-making problems, such as those with high-dimensional action spaces, those requiring long-horizon planning, and settings with sparse rewards. However, learning hierarchical policies from static offline datasets presents a significant challenge. Crucially, actions taken by higher-level policies may not be directly observable within hierarchical controllers, and the offline dataset might have been generated using a different policy structure, hindering the use of standard offline learning algorithms. In this work, we propose OHIO: a framework for offline reinforcement learning (RL) of hierarchical policies. Our framework leverages knowledge of the policy structure to solve the inverse problem, recovering the unobservable high-level actions that likely generated the observed data under our hierarchical policy. This approach constructs a dataset suitable for off-the-shelf offline training. We demonstrate our framework on robotic and network optimization problems and show that it substantially outperforms end-to-end RL methods and improves robustness. We investigate a variety of instantiations of our framework, both in direct deployment of policies trained offline and when online fine-tuning is performed.
Related papers
- Temporal Abstraction in Reinforcement Learning with Offline Data [8.370420807869321]
We propose a framework by which an online hierarchical reinforcement learning algorithm can be trained on an offline dataset of transitions collected by an unknown behavior policy.
We validate our method on Gym MuJoCo environments and robotic gripper block-stacking tasks in the standard as well as transfer and goal-conditioned settings.
arXiv Detail & Related papers (2024-07-21T18:10:31Z) - Offline Reinforcement Learning from Datasets with Structured Non-Stationarity [50.35634234137108]
Current Reinforcement Learning (RL) is often limited by the large amount of data needed to learn a successful policy.
We address a novel Offline RL problem setting in which, while collecting the dataset, the transition and reward functions gradually change between episodes but stay constant within each episode.
We propose a method based on Contrastive Predictive Coding that identifies this non-stationarity in the offline dataset, accounts for it when training a policy, and predicts it during evaluation.
arXiv Detail & Related papers (2024-05-23T02:41:36Z) - Rethinking Decision Transformer via Hierarchical Reinforcement Learning [54.3596066989024]
Decision Transformer (DT) is an innovative algorithm leveraging recent advances of the transformer architecture in reinforcement learning (RL)
We introduce a general sequence modeling framework for studying sequential decision making through the lens of Hierarchical RL.
We show DT emerges as a special case of this framework with certain choices of high-level and low-level policies, and discuss the potential failure of these choices.
arXiv Detail & Related papers (2023-11-01T03:32:13Z) - Planning to Go Out-of-Distribution in Offline-to-Online Reinforcement Learning [9.341618348621662]
We aim to find the best-performing policy within a limited budget of online interactions.
We first study the major online RL exploration methods based on intrinsic rewards and UCB.
We then introduce an algorithm for planning to go out-of-distribution that avoids these issues.
arXiv Detail & Related papers (2023-10-09T13:47:05Z) - Online Nonstochastic Model-Free Reinforcement Learning [35.377261344335736]
We investigate robust model robustness guarantees for environments that may be dynamic or adversarial.
We provide efficient and efficient algorithms for optimizing these policies.
These are the best-known developments in having no dependence on the state-space dimension in having no dependence on the state-space.
arXiv Detail & Related papers (2023-05-27T19:02:55Z) - ARMOR: A Model-based Framework for Improving Arbitrary Baseline Policies
with Offline Data [27.007647483635516]
We propose a new model-based offline RL framework, called Adversarial Models for Offline Reinforcement Learning (ARMOR)
ARMOR robustly learns policies to improve upon an arbitrary baseline policy regardless of data coverage.
arXiv Detail & Related papers (2022-11-08T20:15:28Z) - A Unified Framework for Alternating Offline Model Training and Policy
Learning [62.19209005400561]
In offline model-based reinforcement learning, we learn a dynamic model from historically collected data, and utilize the learned model and fixed datasets for policy learning.
We develop an iterative offline MBRL framework, where we maximize a lower bound of the true expected return.
With the proposed unified model-policy learning framework, we achieve competitive performance on a wide range of continuous-control offline reinforcement learning datasets.
arXiv Detail & Related papers (2022-10-12T04:58:51Z) - A Regularized Implicit Policy for Offline Reinforcement Learning [54.7427227775581]
offline reinforcement learning enables learning from a fixed dataset, without further interactions with the environment.
We propose a framework that supports learning a flexible yet well-regularized fully-implicit policy.
Experiments and ablation study on the D4RL dataset validate our framework and the effectiveness of our algorithmic designs.
arXiv Detail & Related papers (2022-02-19T20:22:04Z) - Representation Matters: Offline Pretraining for Sequential Decision
Making [27.74988221252854]
In this paper, we consider a slightly different approach to incorporating offline data into sequential decision-making.
We find that the use of pretraining with unsupervised learning objectives can dramatically improve the performance of policy learning algorithms.
arXiv Detail & Related papers (2021-02-11T02:38:12Z) - Critic Regularized Regression [70.8487887738354]
We propose a novel offline RL algorithm to learn policies from data using a form of critic-regularized regression (CRR)
We find that CRR performs surprisingly well and scales to tasks with high-dimensional state and action spaces.
arXiv Detail & Related papers (2020-06-26T17:50:26Z) - Non-Stationary Off-Policy Optimization [50.41335279896062]
We study the novel problem of off-policy optimization in piecewise-stationary contextual bandits.
In the offline learning phase, we partition logged data into categorical latent states and learn a near-optimal sub-policy for each state.
In the online deployment phase, we adaptively switch between the learned sub-policies based on their performance.
arXiv Detail & Related papers (2020-06-15T09:16:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.