Octopus Inspired Optimization Algorithm: Multi-Level Structures and Parallel Computing Strategies
- URL: http://arxiv.org/abs/2410.07968v2
- Date: Fri, 17 Jan 2025 08:55:50 GMT
- Title: Octopus Inspired Optimization Algorithm: Multi-Level Structures and Parallel Computing Strategies
- Authors: Xu Wang, Longji Xu, Yiquan Wang, Yuhua Dong, Xiang Li, Jia Deng, Rui He,
- Abstract summary: Octopus Inspired Optimization (OIO) algorithm is inspired by the neural structure of octopus, especially its hierarchical and decentralised interaction properties.<n>OIO shows faster convergence and higher accuracy, especially when dealing with multimodal functions and high-dimensional optimisation problems.<n>It is especially suitable for application scenarios that require fast, efficient and robust optimisation methods, such as robot path planning, supply chain management, and energy system management.
- Score: 21.96416191573034
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper introduces a novel bionic intelligent optimisation algorithm, Octopus Inspired Optimization (OIO) algorithm, which is inspired by the neural structure of octopus, especially its hierarchical and decentralised interaction properties. By simulating the sensory, decision-making, and executive abilities of octopuses, the OIO algorithm adopts a multi-level hierarchical strategy, including tentacles, suckers, individuals and groups, to achieve an effective combination of global and local search. This hierarchical design not only enhances the flexibility and efficiency of the algorithm, but also significantly improves its search efficiency and adaptability. In performance evaluations, including comparisons with existing mainstream intelligent optimisation algorithms, OIO shows faster convergence and higher accuracy, especially when dealing with multimodal functions and high-dimensional optimisation problems. This advantage is even more pronounced as the required minimum accuracy is higher, with the OIO algorithm showing an average speedup of 2.27 times that of conventional particle swarm optimisation (PSO) and 9.63 times that of differential evolution (DE) on multimodal functions. In particular, when dealing with high-dimensional optimisation problems, OIO achieves an average speed of 10.39 times that of DE, demonstrating its superior computational efficiency. In addition, the OIO algorithm also shows a reduction of about 5\% in CPU usage efficiency compared to PSO, which is reflected in the efficiency of CPU resource usage also shows its efficiency. These features make the OIO algorithm show great potential in complex optimisation problems, and it is especially suitable for application scenarios that require fast, efficient and robust optimisation methods, such as robot path planning, supply chain management optimisation, and energy system management.
Related papers
- Bayesian Optimization by Kernel Regression and Density-based Exploration [12.074000212223446]
We propose the Bayesian Optimization by Kernel regression and density-based Exploration (BOKE) algorithm.
BOKE uses kernel regression for efficient function approximation, kernel density for exploration, and integrates them into the confidence bound criteria to guide the optimization process.
We demonstrate that BOKE not only performs competitively compared to Gaussian process-based methods but also exhibits superior computational efficiency.
arXiv Detail & Related papers (2025-02-10T06:16:51Z) - Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling [96.47086913559289]
gradient-based algorithms are widely used in bilevel optimization.
We introduce a without-replacement sampling based algorithm which achieves a faster convergence rate.
We validate our algorithms over both synthetic and real-world applications.
arXiv Detail & Related papers (2024-11-07T17:05:31Z) - Dense Optimizer : An Information Entropy-Guided Structural Search Method for Dense-like Neural Network Design [0.0]
We propose an architecture search method called DenseNet that can search high-performance dense-like network automatically.
DenseNet achieves a top 1 accuracy of 84.3% on CIFAR-100, which is 5.97% higher than the original one.
arXiv Detail & Related papers (2024-10-10T00:23:34Z) - Localized Zeroth-Order Prompt Optimization [54.964765668688806]
We propose a novel algorithm, namely localized zeroth-order prompt optimization (ZOPO)
ZOPO incorporates a Neural Tangent Kernel-based derived Gaussian process into standard zeroth-order optimization for an efficient search of well-performing local optima in prompt optimization.
Remarkably, ZOPO outperforms existing baselines in terms of both the optimization performance and the query efficiency.
arXiv Detail & Related papers (2024-03-05T14:18:15Z) - Improving Performance Insensitivity of Large-scale Multiobjective
Optimization via Monte Carlo Tree Search [7.34812867861951]
We propose an evolutionary algorithm for solving large-scale multiobjective optimization problems based on Monte Carlo tree search.
The proposed method samples the decision variables to construct new nodes on the Monte Carlo tree for optimization and evaluation.
It selects nodes with good evaluation for further search to reduce the performance sensitivity caused by large-scale decision variables.
arXiv Detail & Related papers (2023-04-08T17:15:49Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Recommender System Expedited Quantum Control Optimization [0.0]
Quantum control optimization algorithms are routinely used to generate optimal quantum gates or efficient quantum state transfers.
There are two main challenges in designing efficient optimization algorithms, namely overcoming the sensitivity to local optima and improving the computational speed.
Here, we propose and demonstrate the use of a machine learning method, specifically the recommender system (RS), to deal with the latter challenge.
arXiv Detail & Related papers (2022-01-29T10:25:41Z) - A Simple Evolutionary Algorithm for Multi-modal Multi-objective
Optimization [0.0]
We introduce a steady-state evolutionary algorithm for solving multi-modal, multi-objective optimization problems (MMOPs)
We report its performance on 21 MMOPs from various test suites that are widely used for benchmarking using a low computational budget of 1000 function evaluations.
arXiv Detail & Related papers (2022-01-18T03:31:11Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.