More Experts Than Galaxies: Conditionally-overlapping Experts With Biologically-Inspired Fixed Routing
- URL: http://arxiv.org/abs/2410.08003v2
- Date: Fri, 18 Oct 2024 18:26:38 GMT
- Title: More Experts Than Galaxies: Conditionally-overlapping Experts With Biologically-Inspired Fixed Routing
- Authors: Sagi Shaier, Francisco Pereira, Katharina von der Wense, Lawrence E Hunter, Matt Jones,
- Abstract summary: Conditionally Overlapping Mixture of ExperTs (COMET) is a general deep learning method that inducing a modular, sparse architecture with an exponential number of overlapping experts.
We demonstrate the effectiveness of COMET on a range of tasks, including image classification, language modeling, and regression.
- Score: 5.846028298833611
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The evolution of biological neural systems has led to both modularity and sparse coding, which enables efficiency in energy usage, and robustness across the diversity of tasks in the lifespan. In contrast, standard neural networks rely on dense, non-specialized architectures, where all model parameters are simultaneously updated to learn multiple tasks, leading to representation interference. Current sparse neural network approaches aim to alleviate this issue, but are often hindered by limitations such as 1) trainable gating functions that cause representation collapse; 2) non-overlapping experts that result in redundant computation and slow learning; and 3) reliance on explicit input or task IDs that impose significant constraints on flexibility and scalability. In this paper we propose Conditionally Overlapping Mixture of ExperTs (COMET), a general deep learning method that addresses these challenges by inducing a modular, sparse architecture with an exponential number of overlapping experts. COMET replaces the trainable gating function used in Sparse Mixture of Experts with a fixed, biologically inspired random projection applied to individual input representations. This design causes the degree of expert overlap to depend on input similarity, so that similar inputs tend to share more parameters. This facilitates positive knowledge transfer, resulting in faster learning and improved generalization. We demonstrate the effectiveness of COMET on a range of tasks, including image classification, language modeling, and regression, using several popular deep learning architectures.
Related papers
- ConsistentFeature: A Plug-and-Play Component for Neural Network Regularization [0.32885740436059047]
Over- parameterized neural network models often lead to significant performance discrepancies between training and test sets.
We introduce a simple perspective on overfitting: models learn different representations in different i.i.d. datasets.
We propose an adaptive method, ConsistentFeature, that regularizes the model by constraining feature differences across random subsets of the same training set.
arXiv Detail & Related papers (2024-12-02T13:21:31Z) - Complexity Experts are Task-Discriminative Learners for Any Image Restoration [80.46313715427928]
We introduce complexity experts" -- flexible expert blocks with varying computational complexity and receptive fields.
This preference effectively drives task-specific allocation, assigning tasks to experts with the appropriate complexity.
The proposed MoCE-IR model outperforms state-of-the-art methods, affirming its efficiency and practical applicability.
arXiv Detail & Related papers (2024-11-27T15:58:07Z) - Modular Neural Network Approaches for Surgical Image Recognition [0.0]
We introduce and evaluate different architectures of modular learning for Dorsal Capsulo-Scapholunate Septum (DCSS) instability classification.
Our experiments have shown that modular learning improves performances compared to non-modular systems.
In the second part, we present our approach for data labeling and segmentation with self-training applied on shoulder arthroscopy images.
arXiv Detail & Related papers (2023-07-17T22:28:16Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
We present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules.
inputs to the model are routed through a sequence of functions in a way that is end-to-end learned.
We show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner.
arXiv Detail & Related papers (2021-10-12T23:22:45Z) - Spatio-Temporal Representation Factorization for Video-based Person
Re-Identification [55.01276167336187]
We propose Spatio-Temporal Representation Factorization module (STRF) for re-ID.
STRF is a flexible new computational unit that can be used in conjunction with most existing 3D convolutional neural network architectures for re-ID.
We empirically show that STRF improves performance of various existing baseline architectures while demonstrating new state-of-the-art results.
arXiv Detail & Related papers (2021-07-25T19:29:37Z) - Recognizing and Verifying Mathematical Equations using Multiplicative
Differential Neural Units [86.9207811656179]
We show that memory-augmented neural networks (NNs) can achieve higher-order, memory-augmented extrapolation, stable performance, and faster convergence.
Our models achieve a 1.53% average improvement over current state-of-the-art methods in equation verification and achieve a 2.22% Top-1 average accuracy and 2.96% Top-5 average accuracy for equation completion.
arXiv Detail & Related papers (2021-04-07T03:50:11Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
We consider a problem known as multi-task learning, consisting of fitting a set of regression functions intended for solving different tasks.
In our novel formulation, we couple the parameters of these functions, so that they learn in their task specific domains while staying close to each other.
This facilitates cross-fertilization in which data collected across different domains help improving the learning performance at each other task.
arXiv Detail & Related papers (2020-10-24T21:35:57Z) - Understanding Self-supervised Learning with Dual Deep Networks [74.92916579635336]
We propose a novel framework to understand contrastive self-supervised learning (SSL) methods that employ dual pairs of deep ReLU networks.
We prove that in each SGD update of SimCLR with various loss functions, the weights at each layer are updated by a emphcovariance operator.
To further study what role the covariance operator plays and which features are learned in such a process, we model data generation and augmentation processes through a emphhierarchical latent tree model (HLTM)
arXiv Detail & Related papers (2020-10-01T17:51:49Z) - TorchDyn: A Neural Differential Equations Library [16.43439140464003]
We introduce TorchDyn, a PyTorch library dedicated to continuous-depth learning.
It is designed to elevate neural differential equations to be as accessible as regular plug-and-play deep learning primitives.
arXiv Detail & Related papers (2020-09-20T03:45:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.