論文の概要: Harmonic Oscillator based Particle Swarm Optimization
- arxiv url: http://arxiv.org/abs/2410.08043v1
- Date: Thu, 10 Oct 2024 15:35:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 05:45:05.995573
- Title: Harmonic Oscillator based Particle Swarm Optimization
- Title(参考訳): 高調波振動子を用いた粒子群最適化
- Authors: Yury Chernyak, Ijaz Ahamed Mohammad, Nikolas Masnicak, Matej Pivoluska, Martin Plesch,
- Abstract要約: 一般に、パラメータ(パラメータ空間)の集合は、これらのパラメータ(コスト関数)に依存する関数の最低値を見つけるように調整される。
ほとんどの場合、パラメータ空間は完全に探索するには大きすぎるため、最も効率的な手法は要素(最適化プロセスの開始設定と意思決定に含まれるランダム性)とよく設計された決定論的プロセスを組み合わせることである。
本稿では,食品を探す鳥の群れにインスパイアされた高効率で成功したアルゴリズムであるParticle Optimization(PSO)をハーモニックス(Harmonics)の原理と統合する手法を提案する。
この物理に基づくアプローチは集合エネルギーの概念を導入し、よりスムーズかつスムーズにします。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Numerical optimization techniques are widely used in a broad area of science and technology, from finding the minimal energy of systems in Physics or Chemistry to finding optimal routes in logistics or optimal strategies for high speed trading. In general, a set of parameters (parameter space) is tuned to find the lowest value of a function depending on these parameters (cost function). In most cases the parameter space is too big to be completely searched and the most efficient techniques combine stochastic elements (randomness included in the starting setting and decision making during the optimization process) with well designed deterministic process. Thus there is nothing like a universal best optimization method; rather than that, different methods and their settings are more or less efficient in different contexts. Here we present a method that integrates Particle Swarm Optimization (PSO), a highly effective and successful algorithm inspired by the collective behavior of a flock of birds searching for food, with the principles of Harmonic Oscillators. This physics-based approach introduces the concept of energy, enabling a smoother and a more controlled convergence throughout the optimization process. We test our method on a standard set of test functions and show that in most cases it can outperform its natural competitors including the original PSO as well as the broadly used COBYLA and Differential Evolution optimization methods.
- Abstract(参考訳): 数値最適化技術は、物理学や化学におけるシステムの最小エネルギーの発見から、高速取引のためのロジスティクスや最適戦略の最適経路の発見まで、科学と技術の幅広い領域で広く用いられている。
一般に、パラメータ(パラメータ空間)の集合は、これらのパラメータ(コスト関数)に依存する関数の最低値を見つけるように調整される。
ほとんどの場合、パラメータ空間は完全に探索するには大きすぎるため、最も効率的な手法は確率的要素(最適化過程の開始設定や意思決定に含まれるランダム性)とよく設計された決定論的プロセスを組み合わせることである。
したがって、普遍的な最適化方法のようなものは何もありません。それよりも、異なるメソッドとそれらの設定は、それぞれ異なるコンテキストにおいて、多かれ少なかれ効率的です。
本稿では,食品を探索する鳥の群れの集団行動に着想を得た,高効率で成功したアルゴリズムであるParticle Swarm Optimization (PSO) を統合する手法について,調和オシレータの原理を用いて述べる。
この物理に基づくアプローチはエネルギーの概念を導入し、最適化プロセスを通してより滑らかでより制御された収束を可能にする。
我々は,テスト関数の標準セットでテストを行い,ほとんどの場合,従来のPSOや広く使用されているCOBYLA,微分進化最適化など,自然競合よりも優れていることを示す。
関連論文リスト
- Agent-based Collaborative Random Search for Hyper-parameter Tuning and
Global Function Optimization [0.0]
本稿では,機械学習モデルにおける任意のハイパーパラメータの任意の集合に対する近似値を求めるためのエージェントベース協調手法を提案する。
提案モデルの動作,特に設計パラメータの変化に対して,機械学習およびグローバル関数最適化アプリケーションの両方で検討する。
論文 参考訳(メタデータ) (2023-03-03T21:10:17Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Pre-training helps Bayesian optimization too [49.28382118032923]
機能的事前設定のための代替的なプラクティスを模索する。
特に、より厳密な分布を事前訓練できるような、類似した関数のデータを持つシナリオを考察する。
提案手法は, 競合する手法の少なくとも3倍の効率で, 優れたハイパーパラメータを見つけることができることを示す。
論文 参考訳(メタデータ) (2022-07-07T04:42:54Z) - Performance comparison of optimization methods on variational quantum
algorithms [2.690135599539986]
変分量子アルゴリズム(VQA)は、学術・工業研究への応用に短期的な量子ハードウェアを使用するための有望な道を提供する。
SLSQP, COBYLA, CMA-ES, SPSAの4つの最適化手法の性能について検討した。
論文 参考訳(メタデータ) (2021-11-26T12:13:20Z) - Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm [97.66038345864095]
ゼロ階超勾配(HOZOG)を用いた新しいハイパーパラメータ最適化法を提案する。
具体的には、A型制約最適化問題として、まずハイパーパラメータ最適化を定式化する。
次に、平均ゼロ階超勾配を用いてハイパーパラメータを更新する。
論文 参考訳(メタデータ) (2021-02-17T21:03:05Z) - Particle Swarm Optimization: Fundamental Study and its Application to
Optimization and to Jetty Scheduling Problems [0.0]
従来の手法に関する進化的アルゴリズムの利点は、文献で大いに議論されている。
粒子群はそのような利点を共有しているが、計算コストの低減と実装の容易さが要求されるため、進化的アルゴリズムよりも優れている。
本論文は, それらのチューニングについて検討するものではなく, 従来の研究から汎用的な設定を抽出し, 様々な問題を最適化するために, 事実上同じアルゴリズムを用いている。
論文 参考訳(メタデータ) (2021-01-25T02:06:30Z) - Bayesian Variational Optimization for Combinatorial Spaces [0.0]
幅広い応用としては、分子、タンパク質、DNA、デバイス構造、量子回路の設計などが挙げられる。
最適解や最適解を見つけるためには、圏空間上の最適化が不可欠である。
本稿では,変分最適化と連続緩和を組み合わせた変分ベイズ最適化手法を提案する。
論文 参考訳(メタデータ) (2020-11-03T20:56:13Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Incorporating Expert Prior in Bayesian Optimisation via Space Warping [54.412024556499254]
大きな探索空間では、アルゴリズムは関数の最適値に達する前に、いくつかの低関数値領域を通過する。
このコールドスタートフェーズの1つのアプローチは、最適化を加速できる事前知識を使用することである。
本稿では,関数の事前分布を通じて,関数の最適性に関する事前知識を示す。
先行分布は、探索空間を最適関数の高確率領域の周りに拡張し、最適関数の低確率領域の周りに縮小するようにワープする。
論文 参考訳(メタデータ) (2020-03-27T06:18:49Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。