Harmonic Oscillator based Particle Swarm Optimization
- URL: http://arxiv.org/abs/2410.08043v1
- Date: Thu, 10 Oct 2024 15:35:45 GMT
- Title: Harmonic Oscillator based Particle Swarm Optimization
- Authors: Yury Chernyak, Ijaz Ahamed Mohammad, Nikolas Masnicak, Matej Pivoluska, Martin Plesch,
- Abstract summary: In general, a set of parameters ( parameters space) is tuned to find the lowest value of a function depending on these parameters (cost function)
In most cases the parameter space is too big to be completely searched and the most efficient techniques combine elements (randomness included in the starting setting and decision making during the optimization process) with well designed deterministic process.
Here we present a method that integrates Particle Optimization (PSO), a highly effective and successful algorithm inspired by a flock of birds searching for food, with the principles of Harmonics.
This physics-based approach introduces the concept of collective energy, enabling a smoother and
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Numerical optimization techniques are widely used in a broad area of science and technology, from finding the minimal energy of systems in Physics or Chemistry to finding optimal routes in logistics or optimal strategies for high speed trading. In general, a set of parameters (parameter space) is tuned to find the lowest value of a function depending on these parameters (cost function). In most cases the parameter space is too big to be completely searched and the most efficient techniques combine stochastic elements (randomness included in the starting setting and decision making during the optimization process) with well designed deterministic process. Thus there is nothing like a universal best optimization method; rather than that, different methods and their settings are more or less efficient in different contexts. Here we present a method that integrates Particle Swarm Optimization (PSO), a highly effective and successful algorithm inspired by the collective behavior of a flock of birds searching for food, with the principles of Harmonic Oscillators. This physics-based approach introduces the concept of energy, enabling a smoother and a more controlled convergence throughout the optimization process. We test our method on a standard set of test functions and show that in most cases it can outperform its natural competitors including the original PSO as well as the broadly used COBYLA and Differential Evolution optimization methods.
Related papers
- Agent-based Collaborative Random Search for Hyper-parameter Tuning and
Global Function Optimization [0.0]
This paper proposes an agent-based collaborative technique for finding near-optimal values for any arbitrary set of hyper- parameters in a machine learning model.
The behavior of the presented model, specifically against the changes in its design parameters, is investigated in both machine learning and global function optimization applications.
arXiv Detail & Related papers (2023-03-03T21:10:17Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Pre-training helps Bayesian optimization too [49.28382118032923]
We seek an alternative practice for setting functional priors.
In particular, we consider the scenario where we have data from similar functions that allow us to pre-train a tighter distribution a priori.
Our results show that our method is able to locate good hyper parameters at least 3 times more efficiently than the best competing methods.
arXiv Detail & Related papers (2022-07-07T04:42:54Z) - Performance comparison of optimization methods on variational quantum
algorithms [2.690135599539986]
Variational quantum algorithms (VQAs) offer a promising path towards using near-term quantum hardware for applications in academic and industrial research.
We study the performance of four commonly used gradient-free optimization methods: SLSQP, COBYLA, CMA-ES, and SPSA.
arXiv Detail & Related papers (2021-11-26T12:13:20Z) - Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm [97.66038345864095]
We propose a new hyperparameter optimization method with zeroth-order hyper-gradients (HOZOG)
Specifically, we first formulate hyperparameter optimization as an A-based constrained optimization problem.
Then, we use the average zeroth-order hyper-gradients to update hyper parameters.
arXiv Detail & Related papers (2021-02-17T21:03:05Z) - Particle Swarm Optimization: Fundamental Study and its Application to
Optimization and to Jetty Scheduling Problems [0.0]
The advantages of evolutionary algorithms with respect to traditional methods have been greatly discussed in the literature.
While particle swarms share such advantages, they outperform evolutionary algorithms in that they require lower computational cost and easier implementation.
This paper does not intend to study their tuning, general-purpose settings are taken from previous studies, and virtually the same algorithm is used to optimize a variety of notably different problems.
arXiv Detail & Related papers (2021-01-25T02:06:30Z) - Bayesian Variational Optimization for Combinatorial Spaces [0.0]
Broad applications include the study of molecules, proteins, DNA, device structures and quantum circuit designs.
A on optimization over categorical spaces is needed to find optimal or pareto-optimal solutions.
We introduce a variational Bayesian optimization method that combines variational optimization and continuous relaxations.
arXiv Detail & Related papers (2020-11-03T20:56:13Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Incorporating Expert Prior in Bayesian Optimisation via Space Warping [54.412024556499254]
In big search spaces the algorithm goes through several low function value regions before reaching the optimum of the function.
One approach to subside this cold start phase is to use prior knowledge that can accelerate the optimisation.
In this paper, we represent the prior knowledge about the function optimum through a prior distribution.
The prior distribution is then used to warp the search space in such a way that space gets expanded around the high probability region of function optimum and shrinks around low probability region of optimum.
arXiv Detail & Related papers (2020-03-27T06:18:49Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.