The Effect of Surprisal on Reading Times in Information Seeking and Repeated Reading
- URL: http://arxiv.org/abs/2410.08162v1
- Date: Thu, 10 Oct 2024 17:43:34 GMT
- Title: The Effect of Surprisal on Reading Times in Information Seeking and Repeated Reading
- Authors: Keren Gruteke Klein, Yoav Meiri, Omer Shubi, Yevgeni Berzak,
- Abstract summary: We use eyetracking data to examine three language processing regimes that are common in daily life.
We find that the prediction of surprisal theory regarding the presence of a linear effect of surprisal on processing times, extends to these regimes.
In information seeking, such estimates do not improve the predictive power of processing times compared to standard surprisals.
- Score: 1.2062053320259833
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The effect of surprisal on processing difficulty has been a central topic of investigation in psycholinguistics. Here, we use eyetracking data to examine three language processing regimes that are common in daily life but have not been addressed with respect to this question: information seeking, repeated processing, and the combination of the two. Using standard regime-agnostic surprisal estimates we find that the prediction of surprisal theory regarding the presence of a linear effect of surprisal on processing times, extends to these regimes. However, when using surprisal estimates from regime-specific contexts that match the contexts and tasks given to humans, we find that in information seeking, such estimates do not improve the predictive power of processing times compared to standard surprisals. Further, regime-specific contexts yield near zero surprisal estimates with no predictive power for processing times in repeated reading. These findings point to misalignments of task and memory representations between humans and current language models, and question the extent to which such models can be used for estimating cognitively relevant quantities. We further discuss theoretical challenges posed by these results.
Related papers
- On the Role of Context in Reading Time Prediction [50.87306355705826]
We present a new perspective on how readers integrate context during real-time language comprehension.
Our proposals build on surprisal theory, which posits that the processing effort of a linguistic unit is an affine function of its in-context information content.
arXiv Detail & Related papers (2024-09-12T15:52:22Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - Sparse Deep Learning for Time Series Data: Theory and Applications [9.878774148693575]
Sparse deep learning has become a popular technique for improving the performance of deep neural networks.
This paper studies the theory for sparse deep learning with dependent data.
Our results indicate that the proposed method can consistently identify the autoregressive order for time series data.
arXiv Detail & Related papers (2023-10-05T01:26:13Z) - An Overview Of Temporal Commonsense Reasoning and Acquisition [20.108317515225504]
Temporal commonsense reasoning refers to the ability to understand the typical temporal context of phrases, actions, and events.
Recent research on the performance of large language models suggests that they often take shortcuts in their reasoning and fall prey to simple linguistic traps.
arXiv Detail & Related papers (2023-07-28T01:30:15Z) - Spatio-temporal predictive tasks for abnormal event detection in videos [60.02503434201552]
We propose new constrained pretext tasks to learn object level normality patterns.
Our approach consists in learning a mapping between down-scaled visual queries and their corresponding normal appearance and motion characteristics.
Experiments on several benchmark datasets demonstrate the effectiveness of our approach to localize and track anomalies.
arXiv Detail & Related papers (2022-10-27T19:45:12Z) - Analyzing Wrap-Up Effects through an Information-Theoretic Lens [96.02309964375983]
This work examines the relationship between wrap-up effects and information-theoretic quantities.
We find that the distribution of information in prior contexts is often predictive of sentence- and clause-final RTs.
arXiv Detail & Related papers (2022-03-31T17:41:03Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Evaluating Predictive Distributions: Does Bayesian Deep Learning Work? [45.290773422944866]
Posterior predictive distributions quantify uncertainties ignored by point estimates.
This paper introduces textitThe Neural Testbed, which provides tools for the systematic evaluation of agents that generate such predictions.
arXiv Detail & Related papers (2021-10-09T18:54:02Z) - Context-Aware Attentive Knowledge Tracing [21.397976659857793]
We propose attentive knowledge tracing, which couples flexible attention-based neural network models with a series of novel, interpretable model components.
AKT uses a novel monotonic attention mechanism that relates a learner's future responses to assessment questions to their past responses.
We show that AKT outperforms existing KT methods (by up to $6%$ in AUC in some cases) on predicting future learner responses.
arXiv Detail & Related papers (2020-07-24T02:45:43Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
Clinical researchers often select among and evaluate risk prediction models.
Standard metrics calculated from retrospective data are only related to model utility under certain assumptions.
When predictions are delivered repeatedly throughout time, the relationship between standard metrics and utility is further complicated.
arXiv Detail & Related papers (2020-06-02T16:26:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.