Poison-splat: Computation Cost Attack on 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2410.08190v1
- Date: Thu, 10 Oct 2024 17:57:29 GMT
- Title: Poison-splat: Computation Cost Attack on 3D Gaussian Splatting
- Authors: Jiahao Lu, Yifan Zhang, Qiuhong Shen, Xinchao Wang, Shuicheng Yan,
- Abstract summary: We reveal a significant security vulnerability that has been largely overlooked in 3DGS.
The adversary can poison the input images to drastically increase the computation memory and time needed for 3DGS training.
Such a computation cost attack is achieved by addressing a bi-level optimization problem.
- Score: 90.88713193520917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Gaussian splatting (3DGS), known for its groundbreaking performance and efficiency, has become a dominant 3D representation and brought progress to many 3D vision tasks. However, in this work, we reveal a significant security vulnerability that has been largely overlooked in 3DGS: the computation cost of training 3DGS could be maliciously tampered by poisoning the input data. By developing an attack named Poison-splat, we reveal a novel attack surface where the adversary can poison the input images to drastically increase the computation memory and time needed for 3DGS training, pushing the algorithm towards its worst computation complexity. In extreme cases, the attack can even consume all allocable memory, leading to a Denial-of-Service (DoS) that disrupts servers, resulting in practical damages to real-world 3DGS service vendors. Such a computation cost attack is achieved by addressing a bi-level optimization problem through three tailored strategies: attack objective approximation, proxy model rendering, and optional constrained optimization. These strategies not only ensure the effectiveness of our attack but also make it difficult to defend with simple defensive measures. We hope the revelation of this novel attack surface can spark attention to this crucial yet overlooked vulnerability of 3DGS systems.
Related papers
- Toward Availability Attacks in 3D Point Clouds [28.496421433836908]
We show that extending 2D availability attacks directly to 3D point clouds under distance regularization is susceptible to the degeneracy.
We propose a novel Feature Collision Error-Minimization (FC-EM) method, which creates additional shortcuts in the feature space.
Experiments on typical point cloud datasets, 3D intracranial aneurysm medical dataset, and 3D face dataset verify the superiority and practicality of our approach.
arXiv Detail & Related papers (2024-06-26T08:13:30Z) - DOGS: Distributed-Oriented Gaussian Splatting for Large-Scale 3D Reconstruction Via Gaussian Consensus [56.45194233357833]
We propose DoGaussian, a method that trains 3DGS distributedly.
Our method accelerates the training of 3DGS by 6+ times when evaluated on large-scale scenes.
arXiv Detail & Related papers (2024-05-22T19:17:58Z) - Hide in Thicket: Generating Imperceptible and Rational Adversarial
Perturbations on 3D Point Clouds [62.94859179323329]
Adrial attack methods based on point manipulation for 3D point cloud classification have revealed the fragility of 3D models.
We propose a novel shape-based adversarial attack method, HiT-ADV, which conducts a two-stage search for attack regions based on saliency and imperceptibility perturbation scores.
We propose that by employing benign resampling and benign rigid transformations, we can further enhance physical adversarial strength with little sacrifice to imperceptibility.
arXiv Detail & Related papers (2024-03-08T12:08:06Z) - Everything Perturbed All at Once: Enabling Differentiable Graph Attacks [61.61327182050706]
Graph neural networks (GNNs) have been shown to be vulnerable to adversarial attacks.
We propose a novel attack method called Differentiable Graph Attack (DGA) to efficiently generate effective attacks.
Compared to the state-of-the-art, DGA achieves nearly equivalent attack performance with 6 times less training time and 11 times smaller GPU memory footprint.
arXiv Detail & Related papers (2023-08-29T20:14:42Z) - Adaptive Local Adversarial Attacks on 3D Point Clouds for Augmented
Reality [10.118505317224683]
Adversarial examples are beneficial to improve the robustness of the 3D neural network model.
Most 3D adversarial attack methods perturb the entire point cloud to generate adversarial examples.
We propose an adaptive local adversarial attack method (AL-Adv) on 3D point clouds to generate adversarial point clouds.
arXiv Detail & Related papers (2023-03-12T11:52:02Z) - A Comprehensive Study of the Robustness for LiDAR-based 3D Object
Detectors against Adversarial Attacks [84.10546708708554]
3D object detectors are increasingly crucial for security-critical tasks.
It is imperative to understand their robustness against adversarial attacks.
This paper presents the first comprehensive evaluation and analysis of the robustness of LiDAR-based 3D detectors under adversarial attacks.
arXiv Detail & Related papers (2022-12-20T13:09:58Z) - Improving transferability of 3D adversarial attacks with scale and shear
transformations [34.07511992559102]
This paper proposes Scale and Shear (SS) Attack to generate 3D adversarial examples with strong transferability.
Specifically, we randomly scale or shear the input point cloud, so that the attack will not overfit the white-box model.
Experiments show that the SS attack can be seamlessly combined with the existing state-of-the-art (SOTA) 3D point cloud attack methods.
arXiv Detail & Related papers (2022-11-02T13:09:38Z) - Generating Unrestricted 3D Adversarial Point Clouds [9.685291478330054]
deep learning for 3D point clouds is still vulnerable to adversarial attacks.
We propose an Adversarial Graph-Convolutional Generative Adversarial Network (AdvGCGAN) to generate realistic adversarial 3D point clouds.
arXiv Detail & Related papers (2021-11-17T08:30:18Z) - PointBA: Towards Backdoor Attacks in 3D Point Cloud [31.210502946247498]
We present the backdoor attacks in 3D with a unified framework that exploits the unique properties of 3D data and networks.
Our proposed backdoor attack in 3D point cloud is expected to perform as a baseline for improving the robustness of 3D deep models.
arXiv Detail & Related papers (2021-03-30T04:49:25Z) - Adversarial Attack on Large Scale Graph [58.741365277995044]
Recent studies have shown that graph neural networks (GNNs) are vulnerable against perturbations due to lack of robustness.
Currently, most works on attacking GNNs are mainly using gradient information to guide the attack and achieve outstanding performance.
We argue that the main reason is that they have to use the whole graph for attacks, resulting in the increasing time and space complexity as the data scale grows.
We present a practical metric named Degree Assortativity Change (DAC) to measure the impacts of adversarial attacks on graph data.
arXiv Detail & Related papers (2020-09-08T02:17:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.