Toward Availability Attacks in 3D Point Clouds
- URL: http://arxiv.org/abs/2407.11011v1
- Date: Wed, 26 Jun 2024 08:13:30 GMT
- Title: Toward Availability Attacks in 3D Point Clouds
- Authors: Yifan Zhu, Yibo Miao, Yinpeng Dong, Xiao-Shan Gao,
- Abstract summary: We show that extending 2D availability attacks directly to 3D point clouds under distance regularization is susceptible to the degeneracy.
We propose a novel Feature Collision Error-Minimization (FC-EM) method, which creates additional shortcuts in the feature space.
Experiments on typical point cloud datasets, 3D intracranial aneurysm medical dataset, and 3D face dataset verify the superiority and practicality of our approach.
- Score: 28.496421433836908
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the great progress of 3D vision, data privacy and security issues in 3D deep learning are not explored systematically. In the domain of 2D images, many availability attacks have been proposed to prevent data from being illicitly learned by unauthorized deep models. However, unlike images represented on a fixed dimensional grid, point clouds are characterized as unordered and unstructured sets, posing a significant challenge in designing an effective availability attack for 3D deep learning. In this paper, we theoretically show that extending 2D availability attacks directly to 3D point clouds under distance regularization is susceptible to the degeneracy, rendering the generated poisons weaker or even ineffective. This is because in bi-level optimization, introducing regularization term can result in update directions out of control. To address this issue, we propose a novel Feature Collision Error-Minimization (FC-EM) method, which creates additional shortcuts in the feature space, inducing different update directions to prevent the degeneracy of bi-level optimization. Moreover, we provide a theoretical analysis that demonstrates the effectiveness of the FC-EM attack. Extensive experiments on typical point cloud datasets, 3D intracranial aneurysm medical dataset, and 3D face dataset verify the superiority and practicality of our approach. Code is available at https://github.com/hala64/fc-em.
Related papers
- ImOV3D: Learning Open-Vocabulary Point Clouds 3D Object Detection from Only 2D Images [19.02348585677397]
Open-vocabulary 3D object detection (OV-3Det) aims to generalize beyond the limited number of base categories labeled during the training phase.
The biggest bottleneck is the scarcity of annotated 3D data, whereas 2D image datasets are abundant and richly annotated.
We propose a novel framework ImOV3D to leverage pseudo multimodal representation containing both images and point clouds (PC) to close the modality gap.
arXiv Detail & Related papers (2024-10-31T15:02:05Z) - Hide in Thicket: Generating Imperceptible and Rational Adversarial
Perturbations on 3D Point Clouds [62.94859179323329]
Adrial attack methods based on point manipulation for 3D point cloud classification have revealed the fragility of 3D models.
We propose a novel shape-based adversarial attack method, HiT-ADV, which conducts a two-stage search for attack regions based on saliency and imperceptibility perturbation scores.
We propose that by employing benign resampling and benign rigid transformations, we can further enhance physical adversarial strength with little sacrifice to imperceptibility.
arXiv Detail & Related papers (2024-03-08T12:08:06Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with
Pre-trained Vision-Language Models [62.663113296987085]
Few-shot class-incremental learning aims to mitigate the catastrophic forgetting issue when a model is incrementally trained on limited data.
We introduce two novel components: the Redundant Feature Eliminator (RFE) and the Spatial Noise Compensator (SNC)
Considering the imbalance in existing 3D datasets, we also propose new evaluation metrics that offer a more nuanced assessment of a 3D FSCIL model.
arXiv Detail & Related papers (2023-12-28T14:52:07Z) - AdvMono3D: Advanced Monocular 3D Object Detection with Depth-Aware
Robust Adversarial Training [64.14759275211115]
We propose a depth-aware robust adversarial training method for monocular 3D object detection, dubbed DART3D.
Our adversarial training approach capitalizes on the inherent uncertainty, enabling the model to significantly improve its robustness against adversarial attacks.
arXiv Detail & Related papers (2023-09-03T07:05:32Z) - 3D Adversarial Augmentations for Robust Out-of-Domain Predictions [115.74319739738571]
We focus on improving the generalization to out-of-domain data.
We learn a set of vectors that deform the objects in an adversarial fashion.
We perform adversarial augmentation by applying the learned sample-independent vectors to the available objects when training a model.
arXiv Detail & Related papers (2023-08-29T17:58:55Z) - 3DHacker: Spectrum-based Decision Boundary Generation for Hard-label 3D
Point Cloud Attack [64.83391236611409]
We propose a novel 3D attack method to generate adversarial samples solely with the knowledge of class labels.
Even in the challenging hard-label setting, 3DHacker still competitively outperforms existing 3D attacks regarding the attack performance as well as adversary quality.
arXiv Detail & Related papers (2023-08-15T03:29:31Z) - PointDP: Diffusion-driven Purification against Adversarial Attacks on 3D
Point Cloud Recognition [29.840946461846]
3D Point cloud is a critical data representation in many real-world applications like autonomous driving, robotics, and medical imaging.
Deep learning is notorious for its vulnerability to adversarial attacks.
We propose PointDP, a purification strategy that leverages diffusion models to defend against 3D adversarial attacks.
arXiv Detail & Related papers (2022-08-21T04:49:17Z) - Advancing 3D Medical Image Analysis with Variable Dimension Transform
based Supervised 3D Pre-training [45.90045513731704]
This paper revisits an innovative yet simple fully-supervised 3D network pre-training framework.
With a redesigned 3D network architecture, reformulated natural images are used to address the problem of data scarcity.
Comprehensive experiments on four benchmark datasets demonstrate that the proposed pre-trained models can effectively accelerate convergence.
arXiv Detail & Related papers (2022-01-05T03:11:21Z) - Generating Unrestricted 3D Adversarial Point Clouds [9.685291478330054]
deep learning for 3D point clouds is still vulnerable to adversarial attacks.
We propose an Adversarial Graph-Convolutional Generative Adversarial Network (AdvGCGAN) to generate realistic adversarial 3D point clouds.
arXiv Detail & Related papers (2021-11-17T08:30:18Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - PointBA: Towards Backdoor Attacks in 3D Point Cloud [31.210502946247498]
We present the backdoor attacks in 3D with a unified framework that exploits the unique properties of 3D data and networks.
Our proposed backdoor attack in 3D point cloud is expected to perform as a baseline for improving the robustness of 3D deep models.
arXiv Detail & Related papers (2021-03-30T04:49:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.