Improvement of Spiking Neural Network with Bit Planes and Color Models
- URL: http://arxiv.org/abs/2410.08229v2
- Date: Fri, 08 Nov 2024 14:14:23 GMT
- Title: Improvement of Spiking Neural Network with Bit Planes and Color Models
- Authors: Nhan T. Luu, Duong T. Luu, Nam N. Pham, Thang C. Truong,
- Abstract summary: Spiking neural network (SNN) has emerged as a promising paradigm in computational neuroscience and artificial intelligence.
We present a novel approach to enhance the performance of SNN for images through a new coding method that exploits bit plane representation.
- Score: 0.0
- License:
- Abstract: Spiking neural network (SNN) has emerged as a promising paradigm in computational neuroscience and artificial intelligence, offering advantages such as low energy consumption and small memory footprint. However, their practical adoption is constrained by several challenges, prominently among them being performance optimization. In this study, we present a novel approach to enhance the performance of SNN for images through a new coding method that exploits bit plane representation. Our proposed technique is designed to improve the accuracy of SNN without increasing model size. Also, we investigate the impacts of color models of the proposed coding process. Through extensive experimental validation, we demonstrate the effectiveness of our coding strategy in achieving performance gain across multiple datasets. To the best of our knowledge, this is the first research that considers bit planes and color models in the context of SNN. By leveraging the unique characteristics of bit planes, we hope to unlock new potentials in SNNs performance, potentially paving the way for more efficient and effective SNNs models in future researches and applications.
Related papers
- Q-SNNs: Quantized Spiking Neural Networks [12.719590949933105]
Spiking Neural Networks (SNNs) leverage sparse spikes to represent information and process them in an event-driven manner.
We introduce a lightweight and hardware-friendly Quantized SNN that applies quantization to both synaptic weights and membrane potentials.
We present a new Weight-Spike Dual Regulation (WS-DR) method inspired by information entropy theory.
arXiv Detail & Related papers (2024-06-19T16:23:26Z) - Direct Training High-Performance Deep Spiking Neural Networks: A Review of Theories and Methods [33.377770671553336]
Spiking neural networks (SNNs) offer a promising energy-efficient alternative to artificial neural networks (ANNs)
In this paper, we provide a new perspective to summarize the theories and methods for training deep SNNs with high performance.
arXiv Detail & Related papers (2024-05-06T09:58:54Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Skip Connections in Spiking Neural Networks: An Analysis of Their Effect
on Network Training [0.8602553195689513]
Spiking neural networks (SNNs) have gained attention as a promising alternative to traditional artificial neural networks (ANNs)
In this paper, we study the impact of skip connections on SNNs and propose a hyper parameter optimization technique that adapts models from ANN to SNN.
We demonstrate that optimizing the position, type, and number of skip connections can significantly improve the accuracy and efficiency of SNNs.
arXiv Detail & Related papers (2023-03-23T07:57:32Z) - Optimising Event-Driven Spiking Neural Network with Regularisation and
Cutoff [33.91830001268308]
Spiking neural network (SNN) offers promising improvements in computational efficiency.
Current SNN training methodologies predominantly employ a fixed timestep approach.
We propose to consider cutoff in SNN, which can terminate SNN anytime during the inference to achieve efficient inference.
arXiv Detail & Related papers (2023-01-23T16:14:09Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNs neglect the intrinsic bilinear relationship of real-valued weights and scale factors.
Our work is the first attempt to optimize BNNs from the bilinear perspective.
We obtain robust RBONNs, which show impressive performance over state-of-the-art BNNs on various models and datasets.
arXiv Detail & Related papers (2022-09-04T06:45:33Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Spiking Neural Networks for Visual Place Recognition via Weighted
Neuronal Assignments [24.754429120321365]
Spiking neural networks (SNNs) offer both compelling potential advantages, including energy efficiency and low latencies.
One promising area for high performance SNNs is template matching and image recognition.
This research introduces the first high performance SNN for the Visual Place Recognition (VPR) task.
arXiv Detail & Related papers (2021-09-14T05:40:40Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.