論文の概要: RAB$^2$-DEF: Dynamic and explainable defense against adversarial attacks in Federated Learning to fair poor clients
- arxiv url: http://arxiv.org/abs/2410.08244v1
- Date: Thu, 10 Oct 2024 09:32:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 04:26:09.237821
- Title: RAB$^2$-DEF: Dynamic and explainable defense against adversarial attacks in Federated Learning to fair poor clients
- Title(参考訳): RAB$^2$-DEF:フェデレートラーニングにおける敵攻撃に対する動的かつ説明可能な防御
- Authors: Nuria Rodríguez-Barroso, M. Victoria Luzón, Francisco Herrera,
- Abstract要約: 異なるソースデータシナリオから派生した、データのプライバシに関する問題に対する解決策として、フェデレートラーニング(Federated Learning)が提案されている。
RAB$2$-DEF, a $textbfr$esilient $textbfa$gainst $textbfbtextyzantine$および $textbfb$ackdoor 攻撃を提案する。
画像データセットにおけるRAB$2$-DEFの性能と、最先端の防御を考慮したバイザンチンおよびバックドアアタックの性能を検証した。
- 参考スコア(独自算出の注目度): 8.627236956385325
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: At the same time that artificial intelligence is becoming popular, concern and the need for regulation is growing, including among other requirements the data privacy. In this context, Federated Learning is proposed as a solution to data privacy concerns derived from different source data scenarios due to its distributed learning. The defense mechanisms proposed in literature are just focused on defending against adversarial attacks and the performance, leaving aside other important qualities such as explainability, fairness to poor quality clients, dynamism in terms of attacks configuration and generality in terms of being resilient against different kinds of attacks. In this work, we propose RAB$^2$-DEF, a $\textbf{r}$esilient $\textbf{a}$gainst $\textbf{b}\text{yzantine}$ and $\textbf{b}$ackdoor attacks which is $\textbf{d}$ynamic, $\textbf{e}$xplainable and $\textbf{f}$air to poor clients using local linear explanations. We test the performance of RAB$^2$-DEF in image datasets and both byzantine and backdoor attacks considering the state-of-the-art defenses and achieve that RAB$^2$-DEF is a proper defense at the same time that it boosts the other qualities towards trustworthy artificial intelligence.
- Abstract(参考訳): 同時に、人工知能が普及し、懸念と規制の必要性が高まっている。
この文脈では、フェデレートラーニングは、分散ラーニングによって異なるソースデータシナリオから派生したデータプライバシの問題に対する解決策として提案される。
文献で提案されている防御メカニズムは、敵の攻撃とパフォーマンスに対する防御にのみ焦点をあてており、説明可能性、品質の悪いクライアントに対する公正性、攻撃構成におけるダイナミズム、さまざまな種類の攻撃に対する回復力の観点からの一般性など、その他の重要な特質を残している。
本研究では、ローカルなリニアな説明を用いて、貧弱なクライアントに対して、RAB$^2$-DEF, a $\textbf{r}$esilient $\textbf{a}$gainst $\textbf{b}\text{yzantine}$および $\textbf{b}$ackdoor attacks, which is $\textbf{d}$ynamic, $\textbf{e}$xplainable and $\textbf{f}$airを提案する。
我々は、画像データセットにおけるRAB$^2$-DEFの性能と、最先端の防御を考慮したビザンチンおよびバックドアアタックの両方の性能を検証し、RAB$^2$-DEFが信頼できる人工知能に対する他の特性を高めると同時に適切な防御であることを示す。
関連論文リスト
- Deep Adversarial Defense Against Multilevel-Lp Attacks [5.604868766260297]
本稿では,EMRC法 (Efficient Robust Mode Connectivity) と呼ばれる,計算効率の良いマルチレベル$ell_p$ディフェンスを提案する。
連続最適化で用いられる解析的継続アプローチと同様に、この手法は2つの$p$特化逆最適化モデルをブレンドする。
我々は,AT-$ell_infty$,E-AT,MSDと比較して,本手法が様々な攻撃に対して優れていることを示す実験を行った。
論文 参考訳(メタデータ) (2024-07-12T13:30:00Z) - Adversarial Attacks Neutralization via Data Set Randomization [3.655021726150369]
ディープラーニングモデルに対する敵対的な攻撃は、信頼性とセキュリティに深刻な脅威をもたらす。
本稿では,超空間射影に根ざした新しい防御機構を提案する。
提案手法は,敵対的攻撃に対するディープラーニングモデルの堅牢性を高めていることを示す。
論文 参考訳(メタデータ) (2023-06-21T10:17:55Z) - IDEA: Invariant Defense for Graph Adversarial Robustness [60.0126873387533]
敵攻撃に対する不変因果判定法(IDEA)を提案する。
我々は,情報理論の観点から,ノードと構造に基づく分散目標を導出する。
実験によると、IDEAは5つのデータセットすべてに対する5つの攻撃に対して、最先端の防御性能を達成している。
論文 参考訳(メタデータ) (2023-05-25T07:16:00Z) - The Best Defense is a Good Offense: Adversarial Augmentation against
Adversarial Attacks [91.56314751983133]
A5$は、手元の入力に対する攻撃が失敗することを保証するために防御的摂動を構築するためのフレームワークである。
我々は,地上の真理ラベルを無視するロバスト化ネットワークを用いて,実機での防御強化を効果的に示す。
また、A5$を適用して、確実に堅牢な物理オブジェクトを作成する方法も示します。
論文 参考訳(メタデータ) (2023-05-23T16:07:58Z) - Defending against the Label-flipping Attack in Federated Learning [5.769445676575767]
フェデレーテッド・ラーニング(FL)は、参加する仲間にデザインによる自律性とプライバシを提供する。
ラベルフリッピング(LF)攻撃(英: label-flipping, LF)は、攻撃者がラベルをめくってトレーニングデータに毒を盛る攻撃である。
本稿では、まず、ピアのローカル更新からこれらの勾配を動的に抽出する新しいディフェンスを提案する。
論文 参考訳(メタデータ) (2022-07-05T12:02:54Z) - Fabricated Flips: Poisoning Federated Learning without Data [9.060263645085564]
フェデレートラーニング(FL)に対する攻撃は、生成されたモデルの品質を大幅に低下させる。
本稿では、悪意のあるデータを合成し、敵対的モデルを構築するデータフリーな未標的攻撃(DFA)を提案する。
DFAは、最先端の未標的攻撃と同じような、あるいはそれ以上の攻撃成功率を達成する。
論文 参考訳(メタデータ) (2022-02-07T20:38:28Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Towards Variable-Length Textual Adversarial Attacks [68.27995111870712]
データの離散性のため、自然言語処理タスクに対してテキストによる敵意攻撃を行うことは非自明である。
本稿では,可変長テキスト対比攻撃(VL-Attack)を提案する。
本手法は、iwslt14ドイツ語英訳で3,18$ bleuスコアを達成でき、ベースラインモデルより1.47$改善できる。
論文 参考訳(メタデータ) (2021-04-16T14:37:27Z) - Composite Adversarial Attacks [57.293211764569996]
敵対攻撃は、機械学習(ML)モデルを欺くための技術です。
本論文では,攻撃アルゴリズムの最適組み合わせを自動的に探索するための複合攻撃法(Composite Adrial Attack,CAA)を提案する。
CAAは11の防衛でトップ10の攻撃を破り、時間の経過は少ない。
論文 参考訳(メタデータ) (2020-12-10T03:21:16Z) - Attack Agnostic Adversarial Defense via Visual Imperceptible Bound [70.72413095698961]
本研究の目的は、目視攻撃と目視攻撃の両方に対して一定の範囲内で堅牢な防衛モデルを設計することである。
提案するディフェンスモデルは,MNIST,CIFAR-10,Tiny ImageNetデータベース上で評価される。
提案アルゴリズムは攻撃非依存であり,攻撃アルゴリズムの知識を必要としない。
論文 参考訳(メタデータ) (2020-10-25T23:14:26Z) - Robust and Accurate Authorship Attribution via Program Normalization [24.381734600088453]
ソースコード帰属アプローチは、ディープラーニングの急速な進歩により、驚くほどの精度を実現している。
特に、他の作者の偽作を作ろうとする敵や、原作者を偽装しようとする敵に騙されやすい。
我々は、理論上、著者帰属アプローチの堅牢性を保証する新しい学習フレームワークである$textitnormalize-and-predict$(textitN&P$)を提案する。
論文 参考訳(メタデータ) (2020-07-01T21:27:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。