論文の概要: Exploring ASR-Based Wav2Vec2 for Automated Speech Disorder Assessment: Insights and Analysis
- arxiv url: http://arxiv.org/abs/2410.08250v1
- Date: Thu, 10 Oct 2024 13:12:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 04:26:09.225927
- Title: Exploring ASR-Based Wav2Vec2 for Automated Speech Disorder Assessment: Insights and Analysis
- Title(参考訳): ASRに基づく音声障害自動評価のためのWav2Vec2の探索:洞察と分析
- Authors: Tuan Nguyen, Corinne Fredouille, Alain Ghio, Mathieu Balaguer, Virginie Woisard,
- Abstract要約: Wav2Vec2 ASRベースのモデルは、自動音声認識品質評価タスクのために微調整されている。
本稿では,音声品質評価のためのベースラインモデルの最初の解析を行い,知能度と重大度タスクに着目した。
- 参考スコア(独自算出の注目度): 7.567181073057191
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rise of SSL and ASR technologies, the Wav2Vec2 ASR-based model has been fine-tuned for automated speech disorder quality assessment tasks, yielding impressive results and setting a new baseline for Head and Neck Cancer speech contexts. This demonstrates that the ASR dimension from Wav2Vec2 closely aligns with assessment dimensions. Despite its effectiveness, this system remains a black box with no clear interpretation of the connection between the model ASR dimension and clinical assessments. This paper presents the first analysis of this baseline model for speech quality assessment, focusing on intelligibility and severity tasks. We conduct a layer-wise analysis to identify key layers and compare different SSL and ASR Wav2Vec2 models based on pre-trained data. Additionally, post-hoc XAI methods, including Canonical Correlation Analysis (CCA) and visualization techniques, are used to track model evolution and visualize embeddings for enhanced interpretability.
- Abstract(参考訳): SSLとASR技術の発展に伴い、Wav2Vec2 ASRベースのモデルは、自動音声障害の品質評価タスクのために微調整され、印象的な結果が得られ、頭頸部がんの音声コンテキストのための新しいベースラインが設定された。
このことは、Wav2Vec2のASR次元が評価次元と密接に一致していることを示している。
有効性にもかかわらず、このシステムはモデルASR次元と臨床評価の関連性を明確に解釈することができないブラックボックスのままである。
本稿では,音声品質評価のためのベースラインモデルの最初の解析を行い,知能度と重大度タスクに着目した。
我々は、鍵層を特定し、事前訓練されたデータに基づいて異なるSSLとASR Wav2Vec2モデルを比較する。
さらに、CCA(Canonical correlation Analysis)や可視化技術を含むポストホックXAI法は、モデルの進化を追跡し、解釈可能性を高めるために埋め込みを可視化するために使用される。
関連論文リスト
- Transferable Adversarial Attacks against ASR [43.766547483367795]
最先端自動音声認識モデルにおける実用的なブラックボックス攻撃の脆弱性について検討する。
そこで本稿では,ASRに対する音声認識勾配最適化手法(SAGO)を提案する。
総合的な実験結果から,2つのデータベース上の5つのモデルにまたがるベースラインアプローチと比較して,性能が向上したことが明らかとなった。
論文 参考訳(メタデータ) (2024-11-14T06:32:31Z) - Towards objective and interpretable speech disorder assessment: a comparative analysis of CNN and transformer-based models [7.774205081900019]
頭頸部癌(HNC)は、患者の発話能力に大きな影響を与え、生活の質に影響を及ぼす。
本研究では,HNC患者を対象とした音声分類のための自己教師型Wav2Vec2モデルを提案する。
論文 参考訳(メタデータ) (2024-06-07T08:51:52Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
画像品質評価(IQA)モデルは意味情報から大きな恩恵を受け、異なる種類のオブジェクトを明瞭に扱うことができる。
十分な注釈付きデータが不足している従来の手法では、セマンティックな認識を得るために、CLIPイメージテキスト事前学習モデルをバックボーンとして使用していた。
近年のアプローチでは、このミスマッチに即時技術を使って対処する試みがあるが、これらの解決策には欠点がある。
本稿では、IQAのための革新的なマルチモーダルプロンプトベースの手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T11:45:32Z) - Exploring Pathological Speech Quality Assessment with ASR-Powered Wav2Vec2 in Data-Scarce Context [7.567181073057191]
本稿では,データ不足にもかかわらずセグメントではなく,音声レベルで学習する手法を提案する。
その結果, ASR に基づく Wav2Vec2 モデルが最高の結果をもたらし, ASR と音声品質評価との間に強い相関関係があることが示唆された。
論文 参考訳(メタデータ) (2024-03-29T13:59:34Z) - Diffusion Model Based Visual Compensation Guidance and Visual Difference
Analysis for No-Reference Image Quality Assessment [82.13830107682232]
本稿では, 複雑な関係をモデル化する能力を示す, 最先端(SOTA)生成モデルを提案する。
生成した拡張画像とノイズを含む画像を利用する新しい拡散復元ネットワークを考案する。
2つの視覚評価枝は、得られた高レベル特徴情報を包括的に解析するように設計されている。
論文 参考訳(メタデータ) (2024-02-22T09:39:46Z) - A Quantitative Approach to Understand Self-Supervised Models as
Cross-lingual Feature Extractors [9.279391026742658]
特徴抽出器としてのモデルの性能に及ぼすモデルサイズ,トレーニング目標,モデルアーキテクチャの影響を解析する。
我々は,抽出した表現の音声情報と合成情報を測定するために,音声合成比(PSR)という新しい尺度を開発した。
論文 参考訳(メタデータ) (2023-11-27T15:58:28Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - End-to-End Speech Recognition: A Survey [68.35707678386949]
本調査の目的は、E2E ASRモデルの分類とそれに対応する改善を提供することである。
E2E ASRのすべての関連する側面は、パフォーマンスとデプロイメントの機会に関する議論を伴う、この作業でカバーされている。
論文 参考訳(メタデータ) (2023-03-03T01:46:41Z) - ASR-Aware End-to-end Neural Diarization [15.172086811068962]
本稿では、音響入力と自動音声認識(ASR)モデルから得られる特徴の両方を用いて、コンフォーマーに基づくエンドツーエンドニューラルダイアリゼーション(EEND)モデルを提案する。
この機能を組み込むために、ConformerベースのEENDアーキテクチャの3つの変更が提案されている。
Switchboard+SREデータセットの2つの話者による英語会話実験により、単語位置情報を用いたマルチタスク学習がASR特徴を利用する最も効果的な方法であることが示された。
論文 参考訳(メタデータ) (2022-02-02T21:17:14Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Joint Contextual Modeling for ASR Correction and Language Understanding [60.230013453699975]
言語理解(LU)と協調してASR出力の文脈的言語補正を行うマルチタスクニューラルアプローチを提案する。
そこで本研究では,市販のASRおよびLUシステムの誤差率を,少量のドメイン内データを用いてトレーニングしたジョイントモデルと比較して14%削減できることを示した。
論文 参考訳(メタデータ) (2020-01-28T22:09:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。