Meissonic: Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis
- URL: http://arxiv.org/abs/2410.08261v3
- Date: Thu, 05 Dec 2024 16:24:45 GMT
- Title: Meissonic: Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis
- Authors: Jinbin Bai, Tian Ye, Wei Chow, Enxin Song, Qing-Guo Chen, Xiangtai Li, Zhen Dong, Lei Zhu, Shuicheng Yan,
- Abstract summary: We present Meissonic, which elevates non-autoregressive masked image modeling (MIM) text-to-image to a level comparable with state-of-the-art diffusion models like SDXL.
We leverage high-quality training data, integrate micro-conditions informed by human preference scores, and employ feature compression layers.
Our model not only matches but often exceeds the performance of existing models like SDXL in generating high-quality, high-resolution images.
- Score: 62.06970466554273
- License:
- Abstract: We present Meissonic, which elevates non-autoregressive masked image modeling (MIM) text-to-image to a level comparable with state-of-the-art diffusion models like SDXL. By incorporating a comprehensive suite of architectural innovations, advanced positional encoding strategies, and optimized sampling conditions, Meissonic substantially improves MIM's performance and efficiency. Additionally, we leverage high-quality training data, integrate micro-conditions informed by human preference scores, and employ feature compression layers to further enhance image fidelity and resolution. Our model not only matches but often exceeds the performance of existing models like SDXL in generating high-quality, high-resolution images. Extensive experiments validate Meissonic's capabilities, demonstrating its potential as a new standard in text-to-image synthesis. We release a model checkpoint capable of producing $1024 \times 1024$ resolution images.
Related papers
- DiM: Diffusion Mamba for Efficient High-Resolution Image Synthesis [56.849285913695184]
Diffusion Mamba (DiM) is a sequence model for efficient high-resolution image synthesis.
DiM architecture achieves inference-time efficiency for high-resolution images.
Experiments demonstrate the effectiveness and efficiency of our DiM.
arXiv Detail & Related papers (2024-05-23T06:53:18Z) - Make a Cheap Scaling: A Self-Cascade Diffusion Model for
Higher-Resolution Adaptation [112.08287900261898]
This paper proposes a novel self-cascade diffusion model for rapid adaptation to higher-resolution image and video generation.
Our approach achieves a 5X training speed-up and requires only an additional 0.002M tuning parameters.
Experiments demonstrate that our approach can quickly adapt to higher resolution image and video synthesis by fine-tuning for just 10k steps, with virtually no additional inference time.
arXiv Detail & Related papers (2024-02-16T07:48:35Z) - DiVAE: Photorealistic Images Synthesis with Denoising Diffusion Decoder [73.1010640692609]
We propose a VQ-VAE architecture model with a diffusion decoder (DiVAE) to work as the reconstructing component in image synthesis.
Our model achieves state-of-the-art results and generates more photorealistic images specifically.
arXiv Detail & Related papers (2022-06-01T10:39:12Z) - DiffuseVAE: Efficient, Controllable and High-Fidelity Generation from
Low-Dimensional Latents [26.17940552906923]
We present DiffuseVAE, a novel generative framework that integrates VAE within a diffusion model framework.
We show that the proposed model can generate high-resolution samples and exhibits quality comparable to state-of-the-art models on standard benchmarks.
arXiv Detail & Related papers (2022-01-02T06:44:23Z) - High-Resolution Image Synthesis with Latent Diffusion Models [14.786952412297808]
Training diffusion models on autoencoders allows for the first time to reach a near-optimal point between complexity reduction and detail preservation.
Our latent diffusion models (LDMs) achieve a new state of the art for image inpainting and highly competitive performance on various tasks.
arXiv Detail & Related papers (2021-12-20T18:55:25Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
We propose a novel end-to-end GAN architecture that can generate high-resolution 3D images.
We achieve this goal by using different configurations between training and inference.
Experiments on 3D thorax CT and brain MRI demonstrate that our approach outperforms state of the art in image generation.
arXiv Detail & Related papers (2020-08-05T02:33:04Z) - Improved Techniques for Training Score-Based Generative Models [104.20217659157701]
We provide a new theoretical analysis of learning and sampling from score models in high dimensional spaces.
We can effortlessly scale score-based generative models to images with unprecedented resolutions.
Our score-based models can generate high-fidelity samples that rival best-in-class GANs on various image datasets.
arXiv Detail & Related papers (2020-06-16T09:17:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.