High-Resolution Image Synthesis via Next-Token Prediction
- URL: http://arxiv.org/abs/2411.14808v2
- Date: Sun, 02 Mar 2025 08:53:47 GMT
- Title: High-Resolution Image Synthesis via Next-Token Prediction
- Authors: Dengsheng Chen, Jie Hu, Tiezhu Yue, Xiaoming Wei, Enhua Wu,
- Abstract summary: We introduce textbfD-JEPA$cdot$T2I, an autoregressive model based on continuous tokens to generate high-quality, photorealistic images at arbitrary resolutions, up to 4K.<n>For the first time, we achieve state-of-the-art high-resolution image synthesis via next-token prediction.
- Score: 19.97037318862443
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, autoregressive models have demonstrated remarkable performance in class-conditional image generation. However, the application of next-token prediction to high-resolution text-to-image generation remains largely unexplored. In this paper, we introduce \textbf{D-JEPA$\cdot$T2I}, an autoregressive model based on continuous tokens that incorporates innovations in both architecture and training strategy to generate high-quality, photorealistic images at arbitrary resolutions, up to 4K. Architecturally, we adopt the denoising joint embedding predictive architecture (D-JEPA) while leveraging a multimodal visual transformer to effectively integrate textual and visual features. Additionally, we introduce flow matching loss alongside the proposed Visual Rotary Positional Embedding (VoPE) to enable continuous resolution learning. In terms of training strategy, we propose a data feedback mechanism that dynamically adjusts the sampling procedure based on statistical analysis and an online learning critic model. This encourages the model to move beyond its comfort zone, reducing redundant training on well-mastered scenarios and compelling it to address more challenging cases with suboptimal generation quality. For the first time, we achieve state-of-the-art high-resolution image synthesis via next-token prediction.
Related papers
- Boosting Generative Image Modeling via Joint Image-Feature Synthesis [10.32324138962724]
We introduce a novel generative image modeling framework that seamlessly bridges the gap by leveraging a diffusion model to jointly model low-level image latents.
Our latent-semantic diffusion approach learns to generate coherent image-feature pairs from pure noise.
By eliminating the need for complex distillation objectives, our unified design simplifies training and unlocks a powerful new inference strategy: Representation Guidance.
arXiv Detail & Related papers (2025-04-22T17:41:42Z) - Perceive, Understand and Restore: Real-World Image Super-Resolution with Autoregressive Multimodal Generative Models [33.76031793753807]
We adapt the autoregressive multimodal model Lumina-mGPT into a robust Real-ISR model, namely PURE.
PURE Perceives and Understands the input low-quality image, then REstores its high-quality counterpart.
Experimental results demonstrate that PURE preserves image content while generating realistic details.
arXiv Detail & Related papers (2025-03-14T04:33:59Z) - Frequency Autoregressive Image Generation with Continuous Tokens [31.833852108014312]
We introduce the frequency progressive autoregressive (textbfFAR) paradigm and instantiate FAR with the continuous tokenizer.
We demonstrate the efficacy of FAR through comprehensive experiments on the ImageNet dataset.
arXiv Detail & Related papers (2025-03-07T10:34:04Z) - Visual Autoregressive Modeling for Image Super-Resolution [14.935662351654601]
We propose a novel visual autoregressive modeling for ISR framework with the form of next-scale prediction.
We collect large-scale data and design a training process to obtain robust generative priors.
arXiv Detail & Related papers (2025-01-31T09:53:47Z) - Can We Generate Images with CoT? Let's Verify and Reinforce Image Generation Step by Step [77.86514804787622]
Chain-of-Thought (CoT) reasoning has been extensively explored in large models to tackle complex understanding tasks.
We provide the first comprehensive investigation of the potential of CoT reasoning to enhance autoregressive image generation.
We propose the Potential Assessment Reward Model (PARM) and PARM++, specialized for autoregressive image generation.
arXiv Detail & Related papers (2025-01-23T18:59:43Z) - CART: Compositional Auto-Regressive Transformer for Image Generation [2.5563396001349297]
We introduce a novel approach to image generation using Auto-Regressive (AR) modeling.
Our proposed method addresses these challenges by iteratively adding finer details to an image compositionally.
This strategy is shown to be more effective than the conventional next-token prediction and even surpasses the state-of-the-art next-scale prediction approaches.
arXiv Detail & Related papers (2024-11-15T13:29:44Z) - MMAR: Towards Lossless Multi-Modal Auto-Regressive Probabilistic Modeling [64.09238330331195]
We propose a novel Multi-Modal Auto-Regressive (MMAR) probabilistic modeling framework.
Unlike discretization line of method, MMAR takes in continuous-valued image tokens to avoid information loss.
We show that MMAR demonstrates much more superior performance than other joint multi-modal models.
arXiv Detail & Related papers (2024-10-14T17:57:18Z) - Binarized Diffusion Model for Image Super-Resolution [61.963833405167875]
Binarization, an ultra-compression algorithm, offers the potential for effectively accelerating advanced diffusion models (DMs)
Existing binarization methods result in significant performance degradation.
We introduce a novel binarized diffusion model, BI-DiffSR, for image SR.
arXiv Detail & Related papers (2024-06-09T10:30:25Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
We introduce a novel framework called bridged transfer, which initially employs synthetic images for fine-tuning a pre-trained model to improve its transferability.
We propose dataset style inversion strategy to improve the stylistic alignment between synthetic and real images.
Our proposed methods are evaluated across 10 different datasets and 5 distinct models, demonstrating consistent improvements.
arXiv Detail & Related papers (2024-03-28T22:25:05Z) - FouriScale: A Frequency Perspective on Training-Free High-Resolution Image Synthesis [48.9652334528436]
We introduce an innovative, training-free approach FouriScale from the perspective of frequency domain analysis.
We replace the original convolutional layers in pre-trained diffusion models by incorporating a dilation technique along with a low-pass operation.
Our method successfully balances the structural integrity and fidelity of generated images, achieving an astonishing capacity of arbitrary-size, high-resolution, and high-quality generation.
arXiv Detail & Related papers (2024-03-19T17:59:33Z) - Scaling Rectified Flow Transformers for High-Resolution Image Synthesis [22.11487736315616]
Rectified flow is a recent generative model formulation that connects data and noise in a straight line.
We improve existing noise sampling techniques for training rectified flow models by biasing them towards perceptually relevant scales.
We present a novel transformer-based architecture for text-to-image generation that uses separate weights for the two modalities.
arXiv Detail & Related papers (2024-03-05T18:45:39Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
We propose a simple yet effective scheme to harness a diffusion model for visual perception tasks.
We introduce learnable embeddings (meta prompts) to the pre-trained diffusion models to extract proper features for perception.
Our approach achieves new performance records in depth estimation tasks on NYU depth V2 and KITTI, and in semantic segmentation task on CityScapes.
arXiv Detail & Related papers (2023-12-22T14:40:55Z) - OT-Attack: Enhancing Adversarial Transferability of Vision-Language
Models via Optimal Transport Optimization [65.57380193070574]
Vision-language pre-training models are vulnerable to multi-modal adversarial examples.
Recent works have indicated that leveraging data augmentation and image-text modal interactions can enhance the transferability of adversarial examples.
We propose an Optimal Transport-based Adversarial Attack, dubbed OT-Attack.
arXiv Detail & Related papers (2023-12-07T16:16:50Z) - A Layer-Wise Tokens-to-Token Transformer Network for Improved Historical
Document Image Enhancement [13.27528507177775]
We propose textbfT2T-BinFormer which is a novel document binarization encoder-decoder architecture based on a Tokens-to-token vision transformer.
Experiments on various DIBCO and H-DIBCO benchmarks demonstrate that the proposed model outperforms the existing CNN and ViT-based state-of-the-art methods.
arXiv Detail & Related papers (2023-12-06T23:01:11Z) - Corner-to-Center Long-range Context Model for Efficient Learned Image
Compression [70.0411436929495]
In the framework of learned image compression, the context model plays a pivotal role in capturing the dependencies among latent representations.
We propose the textbfCorner-to-Center transformer-based Context Model (C$3$M) designed to enhance context and latent predictions.
In addition, to enlarge the receptive field in the analysis and synthesis transformation, we use the Long-range Crossing Attention Module (LCAM) in the encoder/decoder.
arXiv Detail & Related papers (2023-11-29T21:40:28Z) - Reinforcement Learning from Diffusion Feedback: Q* for Image Search [2.5835347022640254]
We present two models for image generation using model-agnostic learning.
RLDF is a singular approach for visual imitation through prior-preserving reward function guidance.
It generates high-quality images over varied domains showcasing class-consistency and strong visual diversity.
arXiv Detail & Related papers (2023-11-27T09:20:12Z) - Text-driven Visual Synthesis with Latent Diffusion Prior [37.736313030226654]
We present a generic approach using latent diffusion models as powerful image priors for various visual synthesis tasks.
We demonstrate the efficacy of our approach on three different applications, text-to-3D, StyleGAN adaptation, and layered image editing.
arXiv Detail & Related papers (2023-02-16T18:59:58Z) - COTS: Collaborative Two-Stream Vision-Language Pre-Training Model for
Cross-Modal Retrieval [59.15034487974549]
We propose a novel COllaborative Two-Stream vision-language pretraining model termed COTS for image-text retrieval.
Our COTS achieves the highest performance among all two-stream methods and comparable performance with 10,800X faster in inference.
Importantly, our COTS is also applicable to text-to-video retrieval, yielding new state-ofthe-art on the widely-used MSR-VTT dataset.
arXiv Detail & Related papers (2022-04-15T12:34:47Z) - A Generic Approach for Enhancing GANs by Regularized Latent Optimization [79.00740660219256]
We introduce a generic framework called em generative-model inference that is capable of enhancing pre-trained GANs effectively and seamlessly.
Our basic idea is to efficiently infer the optimal latent distribution for the given requirements using Wasserstein gradient flow techniques.
arXiv Detail & Related papers (2021-12-07T05:22:50Z) - Causal Contextual Prediction for Learned Image Compression [36.08393281509613]
We propose the concept of separate entropy coding to leverage a serial decoding process for causal contextual entropy prediction in the latent space.
A causal context model is proposed that separates the latents across channels and makes use of cross-channel relationships to generate highly informative contexts.
We also propose a causal global prediction model, which is able to find global reference points for accurate predictions of unknown points.
arXiv Detail & Related papers (2020-11-19T08:15:10Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z) - Two-shot Spatially-varying BRDF and Shape Estimation [89.29020624201708]
We propose a novel deep learning architecture with a stage-wise estimation of shape and SVBRDF.
We create a large-scale synthetic training dataset with domain-randomized geometry and realistic materials.
Experiments on both synthetic and real-world datasets show that our network trained on a synthetic dataset can generalize well to real-world images.
arXiv Detail & Related papers (2020-04-01T12:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.