Evaluating Differentially Private Synthetic Data Generation in High-Stakes Domains
- URL: http://arxiv.org/abs/2410.08327v1
- Date: Thu, 10 Oct 2024 19:31:02 GMT
- Title: Evaluating Differentially Private Synthetic Data Generation in High-Stakes Domains
- Authors: Krithika Ramesh, Nupoor Gandhi, Pulkit Madaan, Lisa Bauer, Charith Peris, Anjalie Field,
- Abstract summary: We explore the feasibility of using synthetic data generated from differentially private language models in place of real data to facilitate the development of NLP in high-stakes domains.
Our results show that prior simplistic evaluations have failed to highlight utility, privacy, and fairness issues in the synthetic data.
- Score: 9.123834467375532
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The difficulty of anonymizing text data hinders the development and deployment of NLP in high-stakes domains that involve private data, such as healthcare and social services. Poorly anonymized sensitive data cannot be easily shared with annotators or external researchers, nor can it be used to train public models. In this work, we explore the feasibility of using synthetic data generated from differentially private language models in place of real data to facilitate the development of NLP in these domains without compromising privacy. In contrast to prior work, we generate synthetic data for real high-stakes domains, and we propose and conduct use-inspired evaluations to assess data quality. Our results show that prior simplistic evaluations have failed to highlight utility, privacy, and fairness issues in the synthetic data. Overall, our work underscores the need for further improvements to synthetic data generation for it to be a viable way to enable privacy-preserving data sharing.
Related papers
- Mitigating the Privacy Issues in Retrieval-Augmented Generation (RAG) via Pure Synthetic Data [51.41288763521186]
Retrieval-augmented generation (RAG) enhances the outputs of language models by integrating relevant information retrieved from external knowledge sources.
RAG systems may face severe privacy risks when retrieving private data.
We propose using synthetic data as a privacy-preserving alternative for the retrieval data.
arXiv Detail & Related papers (2024-06-20T22:53:09Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - Scaling While Privacy Preserving: A Comprehensive Synthetic Tabular Data
Generation and Evaluation in Learning Analytics [0.412484724941528]
Privacy poses a significant obstacle to the progress of learning analytics (LA), presenting challenges like inadequate anonymization and data misuse.
Synthetic data emerges as a potential remedy, offering robust privacy protection.
Prior LA research on synthetic data lacks thorough evaluation, essential for assessing the delicate balance between privacy and data utility.
arXiv Detail & Related papers (2024-01-12T20:27:55Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - The Use of Synthetic Data to Train AI Models: Opportunities and Risks
for Sustainable Development [0.6906005491572401]
This paper investigates the policies governing the creation, utilization, and dissemination of synthetic data.
A well crafted synthetic data policy must strike a balance between privacy concerns and the utility of data.
arXiv Detail & Related papers (2023-08-31T23:18:53Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
Synthetic data may become a dominant force in the machine learning world, promising a future where datasets can be tailored to individual needs.
We discuss which fundamental challenges the community needs to overcome for wider relevance and application of synthetic data.
arXiv Detail & Related papers (2023-04-07T16:38:40Z) - Synthetic Data: Methods, Use Cases, and Risks [11.413309528464632]
A possible alternative gaining momentum in both the research community and industry is to share synthetic data instead.
We provide a gentle introduction to synthetic data and discuss its use cases, the privacy challenges that are still unaddressed, and its inherent limitations as an effective privacy-enhancing technology.
arXiv Detail & Related papers (2023-03-01T16:35:33Z) - Private Set Generation with Discriminative Information [63.851085173614]
Differentially private data generation is a promising solution to the data privacy challenge.
Existing private generative models are struggling with the utility of synthetic samples.
We introduce a simple yet effective method that greatly improves the sample utility of state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-07T10:02:55Z) - Differentially Private Language Models for Secure Data Sharing [19.918137395199224]
In this paper, we show how to train a generative language model in a differentially private manner and consequently sampling data from it.
Using natural language prompts and a new prompt-mismatch loss, we are able to create highly accurate and fluent textual datasets.
We perform thorough experiments indicating that our synthetic datasets do not leak information from our original data and are of high language quality.
arXiv Detail & Related papers (2022-10-25T11:12:56Z) - Really Useful Synthetic Data -- A Framework to Evaluate the Quality of
Differentially Private Synthetic Data [2.538209532048867]
Recent advances in generating synthetic data that allow to add principled ways of protecting privacy are a crucial step in sharing statistical information in a privacy preserving way.
To further optimise the inherent trade-off between data privacy and data quality, it is necessary to think closely about the latter.
We develop a framework to evaluate the quality of differentially private synthetic data from an applied researcher's perspective.
arXiv Detail & Related papers (2020-04-16T16:24:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.