Synthetic Data Privacy Metrics
- URL: http://arxiv.org/abs/2501.03941v1
- Date: Tue, 07 Jan 2025 17:02:33 GMT
- Title: Synthetic Data Privacy Metrics
- Authors: Amy Steier, Lipika Ramaswamy, Andre Manoel, Alexa Haushalter,
- Abstract summary: We review the pros and cons of popular metrics that include simulations of adversarial attacks.
We also review current best practices for amending generative models to enhance the privacy of the data they create.
- Score: 2.1213500139850017
- License:
- Abstract: Recent advancements in generative AI have made it possible to create synthetic datasets that can be as accurate as real-world data for training AI models, powering statistical insights, and fostering collaboration with sensitive datasets while offering strong privacy guarantees. Effectively measuring the empirical privacy of synthetic data is an important step in the process. However, while there is a multitude of new privacy metrics being published every day, there currently is no standardization. In this paper, we review the pros and cons of popular metrics that include simulations of adversarial attacks. We also review current best practices for amending generative models to enhance the privacy of the data they create (e.g. differential privacy).
Related papers
- Evaluating Differentially Private Synthetic Data Generation in High-Stakes Domains [9.123834467375532]
We explore the feasibility of using synthetic data generated from differentially private language models in place of real data to facilitate the development of NLP in high-stakes domains.
Our results show that prior simplistic evaluations have failed to highlight utility, privacy, and fairness issues in the synthetic data.
arXiv Detail & Related papers (2024-10-10T19:31:02Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
The success of AI models relies on the availability of large, diverse, and high-quality datasets.
Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns.
arXiv Detail & Related papers (2024-04-11T06:34:17Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - The Inadequacy of Similarity-based Privacy Metrics: Privacy Attacks against "Truly Anonymous" Synthetic Datasets [12.730435519914415]
We examine the privacy metrics used in real-world synthetic data deployments and demonstrate their unreliability in several ways.
We introduce ReconSyn, a reconstruction attack that generates multiple synthetic datasets that are considered private by the metrics but actually leak unique information to individual records.
We show that ReconSyn recovers 78-100% of the outliers in the train data with only black-box access to a single fitted generative model and the privacy metrics.
arXiv Detail & Related papers (2023-12-08T15:42:28Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - The Use of Synthetic Data to Train AI Models: Opportunities and Risks
for Sustainable Development [0.6906005491572401]
This paper investigates the policies governing the creation, utilization, and dissemination of synthetic data.
A well crafted synthetic data policy must strike a balance between privacy concerns and the utility of data.
arXiv Detail & Related papers (2023-08-31T23:18:53Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
Synthetic data may become a dominant force in the machine learning world, promising a future where datasets can be tailored to individual needs.
We discuss which fundamental challenges the community needs to overcome for wider relevance and application of synthetic data.
arXiv Detail & Related papers (2023-04-07T16:38:40Z) - Membership Inference Attacks against Synthetic Data through Overfitting
Detection [84.02632160692995]
We argue for a realistic MIA setting that assumes the attacker has some knowledge of the underlying data distribution.
We propose DOMIAS, a density-based MIA model that aims to infer membership by targeting local overfitting of the generative model.
arXiv Detail & Related papers (2023-02-24T11:27:39Z) - Private Set Generation with Discriminative Information [63.851085173614]
Differentially private data generation is a promising solution to the data privacy challenge.
Existing private generative models are struggling with the utility of synthetic samples.
We introduce a simple yet effective method that greatly improves the sample utility of state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-07T10:02:55Z) - Enabling Synthetic Data adoption in regulated domains [1.9512796489908306]
The switch from a Model-Centric to a Data-Centric mindset is putting emphasis on data and its quality rather than algorithms.
In particular, the sensitive nature of the information in highly regulated scenarios needs to be accounted for.
A clever way to bypass such a conundrum relies on Synthetic Data: data obtained from a generative process, learning the real data properties.
arXiv Detail & Related papers (2022-04-13T10:53:54Z) - Really Useful Synthetic Data -- A Framework to Evaluate the Quality of
Differentially Private Synthetic Data [2.538209532048867]
Recent advances in generating synthetic data that allow to add principled ways of protecting privacy are a crucial step in sharing statistical information in a privacy preserving way.
To further optimise the inherent trade-off between data privacy and data quality, it is necessary to think closely about the latter.
We develop a framework to evaluate the quality of differentially private synthetic data from an applied researcher's perspective.
arXiv Detail & Related papers (2020-04-16T16:24:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.