Simultaneous Reward Distillation and Preference Learning: Get You a Language Model Who Can Do Both
- URL: http://arxiv.org/abs/2410.08458v1
- Date: Fri, 11 Oct 2024 02:19:11 GMT
- Title: Simultaneous Reward Distillation and Preference Learning: Get You a Language Model Who Can Do Both
- Authors: Abhijnan Nath, Changsoo Jung, Ethan Seefried, Nikhil Krishnaswamy,
- Abstract summary: Direct Reward Distillation and policy-Optimization (DRDO) is a supervised knowledge distillation-based preference alignment method.
DRDO directly mimics rewards assigned by an oracle while learning human preferences from a novel preference likelihood formulation.
Our experimental results on the Ultrafeedback and TL;DR datasets demonstrate that policies trained using DRDO surpass previous methods.
- Score: 6.102274021710727
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reward modeling of human preferences is one of the cornerstones of building usable generative large language models (LLMs). While traditional RLHF-based alignment methods explicitly maximize the expected rewards from a separate reward model, more recent supervised alignment methods like Direct Preference Optimization (DPO) circumvent this phase to avoid problems including model drift and reward overfitting. Although popular due to its simplicity, DPO and similar direct alignment methods can still lead to degenerate policies, and rely heavily on the Bradley-Terry-based preference formulation to model reward differences between pairs of candidate outputs. This formulation is challenged by non-deterministic or noisy preference labels, for example human scoring of two candidate outputs is of low confidence. In this paper, we introduce DRDO (Direct Reward Distillation and policy-Optimization), a supervised knowledge distillation-based preference alignment method that simultaneously models rewards and preferences to avoid such degeneracy. DRDO directly mimics rewards assigned by an oracle while learning human preferences from a novel preference likelihood formulation. Our experimental results on the Ultrafeedback and TL;DR datasets demonstrate that policies trained using DRDO surpass previous methods such as DPO and e-DPO in terms of expected rewards and are more robust, on average, to noisy preference signals as well as out-of-distribution (OOD) settings.
Related papers
- Uncertainty-Penalized Direct Preference Optimization [52.387088396044206]
We develop a pessimistic framework for DPO by introducing preference uncertainty penalization schemes.
The penalization serves as a correction to the loss which attenuates the loss gradient for uncertain samples.
We show improved overall performance compared to vanilla DPO, as well as better completions on prompts from high-uncertainty chosen/rejected responses.
arXiv Detail & Related papers (2024-10-26T14:24:37Z) - SePPO: Semi-Policy Preference Optimization for Diffusion Alignment [67.8738082040299]
We propose a preference optimization method that aligns DMs with preferences without relying on reward models or paired human-annotated data.
We validate SePPO across both text-to-image and text-to-video benchmarks.
arXiv Detail & Related papers (2024-10-07T17:56:53Z) - Zeroth-Order Policy Gradient for Reinforcement Learning from Human
Feedback without Reward Inference [17.76565371753346]
This paper develops two RLHF algorithms without reward inference.
The key idea is to estimate the local value function difference from human preferences and then approximate the policy gradient with a zeroth-order gradient approximator.
Our results show there exist provably efficient methods to solve general RLHF problems without reward inference.
arXiv Detail & Related papers (2024-09-25T22:20:11Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.
We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.
We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - Robust Preference Optimization through Reward Model Distillation [68.65844394615702]
Language model (LM) post-training involves maximizing a reward function that is derived from preference annotations.
DPO is a popular offline alignment method that trains a policy directly on preference data without the need to train a reward model or apply reinforcement learning.
We analyze this phenomenon and propose distillation to get a better proxy for the true preference distribution over generation pairs.
arXiv Detail & Related papers (2024-05-29T17:39:48Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.
To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.
Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - D2PO: Discriminator-Guided DPO with Response Evaluation Models [63.71853401569461]
We propose D2PO, discriminator-guided DPO, for the online setting where preferences are being collected throughout learning.
As we collect gold preferences, we use these not only to train our policy, but to train a discriminative response evaluation model to silver-label even more synthetic data for policy training.
We show conditions under which silver labeling is most helpful: it is most effective when training the policy with DPO, outperforming traditional PPO, and benefits from maintaining a separate discriminator from the policy model.
arXiv Detail & Related papers (2024-05-02T17:44:41Z) - RS-DPO: A Hybrid Rejection Sampling and Direct Preference Optimization Method for Alignment of Large Language Models [7.676477609461592]
Reinforcement learning from human feedback (RLHF) has been extensively employed to align large language models with user intent.
DPO relies on contrastive responses generated from human annotator and alternative LLM, instead of the policy model.
In this paper, we address both challenges by systematically combining sampling rejection (RS) and DPO.
Our proposed method effectively fine-tunes LLMs with limited resource environments, leading to improved alignment with user intent.
arXiv Detail & Related papers (2024-02-15T16:00:58Z) - Statistical Rejection Sampling Improves Preference Optimization [42.57245965632205]
We introduce a novel approach to source preference data from the target optimal policy using rejection sampling.
We also propose a unified framework that enhances the loss functions used in both Sequence Likelihood (SLiC) and Direct Preference Optimization (DPO) from a preference modeling standpoint.
arXiv Detail & Related papers (2023-09-13T01:07:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.