ARCap: Collecting High-quality Human Demonstrations for Robot Learning with Augmented Reality Feedback
- URL: http://arxiv.org/abs/2410.08464v1
- Date: Fri, 11 Oct 2024 02:30:46 GMT
- Title: ARCap: Collecting High-quality Human Demonstrations for Robot Learning with Augmented Reality Feedback
- Authors: Sirui Chen, Chen Wang, Kaden Nguyen, Li Fei-Fei, C. Karen Liu,
- Abstract summary: We propose ARCap, a portable data collection system that provides visual feedback through augmented reality (AR) and haptic warnings to guide users in collecting high-quality demonstrations.
With data collected from ARCap, robots can perform challenging tasks, such as manipulation in cluttered environments and long-horizon cross-embodiment manipulation.
- Score: 21.9704438641606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent progress in imitation learning from human demonstrations has shown promising results in teaching robots manipulation skills. To further scale up training datasets, recent works start to use portable data collection devices without the need for physical robot hardware. However, due to the absence of on-robot feedback during data collection, the data quality depends heavily on user expertise, and many devices are limited to specific robot embodiments. We propose ARCap, a portable data collection system that provides visual feedback through augmented reality (AR) and haptic warnings to guide users in collecting high-quality demonstrations. Through extensive user studies, we show that ARCap enables novice users to collect robot-executable data that matches robot kinematics and avoids collisions with the scenes. With data collected from ARCap, robots can perform challenging tasks, such as manipulation in cluttered environments and long-horizon cross-embodiment manipulation. ARCap is fully open-source and easy to calibrate; all components are built from off-the-shelf products. More details and results can be found on our website: https://stanford-tml.github.io/ARCap
Related papers
- Robots Pre-train Robots: Manipulation-Centric Robotic Representation from Large-Scale Robot Datasets [24.77850617214567]
We propose a foundation representation learning framework capturing both visual features and the dynamics information such as actions and proprioceptions of manipulation tasks.
Specifically, we pre-train a visual encoder on the DROID robotic dataset and leverage motion-relevant data such as robot proprioceptive states and actions.
We introduce a novel contrastive loss that aligns visual observations with the robot's proprioceptive state-action dynamics, combined with a behavior cloning (BC)-like actor loss to predict actions during pre-training, along with a time contrastive loss.
arXiv Detail & Related papers (2024-10-29T17:58:13Z) - VITAL: Visual Teleoperation to Enhance Robot Learning through Human-in-the-Loop Corrections [10.49712834719005]
We propose a low-cost visual teleoperation system for bimanual manipulation tasks, called VITAL.
Our approach leverages affordable hardware and visual processing techniques to collect demonstrations.
We enhance the generalizability and robustness of the learned policies by utilizing both real and simulated environments.
arXiv Detail & Related papers (2024-07-30T23:29:47Z) - MimicGen: A Data Generation System for Scalable Robot Learning using
Human Demonstrations [55.549956643032836]
MimicGen is a system for automatically synthesizing large-scale, rich datasets from only a small number of human demonstrations.
We show that robot agents can be effectively trained on this generated dataset by imitation learning to achieve strong performance in long-horizon and high-precision tasks.
arXiv Detail & Related papers (2023-10-26T17:17:31Z) - Giving Robots a Hand: Learning Generalizable Manipulation with
Eye-in-Hand Human Video Demonstrations [66.47064743686953]
Eye-in-hand cameras have shown promise in enabling greater sample efficiency and generalization in vision-based robotic manipulation.
Videos of humans performing tasks, on the other hand, are much cheaper to collect since they eliminate the need for expertise in robotic teleoperation.
In this work, we augment narrow robotic imitation datasets with broad unlabeled human video demonstrations to greatly enhance the generalization of eye-in-hand visuomotor policies.
arXiv Detail & Related papers (2023-07-12T07:04:53Z) - RH20T: A Comprehensive Robotic Dataset for Learning Diverse Skills in
One-Shot [56.130215236125224]
A key challenge in robotic manipulation in open domains is how to acquire diverse and generalizable skills for robots.
Recent research in one-shot imitation learning has shown promise in transferring trained policies to new tasks based on demonstrations.
This paper aims to unlock the potential for an agent to generalize to hundreds of real-world skills with multi-modal perception.
arXiv Detail & Related papers (2023-07-02T15:33:31Z) - AR2-D2:Training a Robot Without a Robot [53.10633639596096]
We introduce AR2-D2, a system for collecting demonstrations which does not require people with specialized training.
AR2-D2 is a framework in the form of an iOS app that people can use to record a video of themselves manipulating any object.
We show that data collected via our system enables the training of behavior cloning agents in manipulating real objects.
arXiv Detail & Related papers (2023-06-23T23:54:26Z) - Scaling Robot Learning with Semantically Imagined Experience [21.361979238427722]
Recent advances in robot learning have shown promise in enabling robots to perform manipulation tasks.
One of the key contributing factors to this progress is the scale of robot data used to train the models.
We propose an alternative route and leverage text-to-image foundation models widely used in computer vision and natural language processing.
arXiv Detail & Related papers (2023-02-22T18:47:51Z) - Learning Visualization Policies of Augmented Reality for Human-Robot
Collaboration [5.400491728405083]
In human-robot collaboration domains, augmented reality (AR) technologies have enabled people to visualize the state of robots.
Current AR-based visualization policies are designed manually, which requires a lot of human efforts and domain knowledge.
We develop a framework, called VARIL, that enables AR agents to learn visualization policies from demonstrations.
arXiv Detail & Related papers (2022-11-13T22:03:20Z) - Learning Generalizable Robotic Reward Functions from "In-The-Wild" Human
Videos [59.58105314783289]
Domain-agnostic Video Discriminator (DVD) learns multitask reward functions by training a discriminator to classify whether two videos are performing the same task.
DVD can generalize by virtue of learning from a small amount of robot data with a broad dataset of human videos.
DVD can be combined with visual model predictive control to solve robotic manipulation tasks on a real WidowX200 robot in an unseen environment from a single human demo.
arXiv Detail & Related papers (2021-03-31T05:25:05Z) - Visual Imitation Made Easy [102.36509665008732]
We present an alternate interface for imitation that simplifies the data collection process while allowing for easy transfer to robots.
We use commercially available reacher-grabber assistive tools both as a data collection device and as the robot's end-effector.
We experimentally evaluate on two challenging tasks: non-prehensile pushing and prehensile stacking, with 1000 diverse demonstrations for each task.
arXiv Detail & Related papers (2020-08-11T17:58:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.