論文の概要: Aligned Divergent Pathways for Omni-Domain Generalized Person Re-Identification
- arxiv url: http://arxiv.org/abs/2410.08466v1
- Date: Fri, 11 Oct 2024 02:36:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 03:06:36.391851
- Title: Aligned Divergent Pathways for Omni-Domain Generalized Person Re-Identification
- Title(参考訳): Omni-Domain Generalized Person Re-Identificationのための配向分岐経路
- Authors: Eugene P. W. Ang, Shan Lin, Alex C. Kot,
- Abstract要約: Person ReIDは、完全に監督され、ドメインが一般化された Person R e ID において著しく進歩している。
本稿では,Omni-Domain Generalization Person ReID(ODG-ReID)を提案する。
提案手法は,ベースアーキテクチャを元のバックボーンのテールをコピーしてマルチブランチ構造に変換する。
- 参考スコア(独自算出の注目度): 30.208890289394994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Person Re-identification (Person ReID) has advanced significantly in fully supervised and domain generalized Person R e ID. However, methods developed for one task domain transfer poorly to the other. An ideal Person ReID method should be effective regardless of the number of domains involved in training or testing. Furthermore, given training data from the target domain, it should perform at least as well as state-of-the-art (SOTA) fully supervised Person ReID methods. We call this paradigm Omni-Domain Generalization Person ReID, referred to as ODG-ReID, and propose a way to achieve this by expanding compatible backbone architectures into multiple diverse pathways. Our method, Aligned Divergent Pathways (ADP), first converts a base architecture into a multi-branch structure by copying the tail of the original backbone. We design our module Dynamic Max-Deviance Adaptive Instance Normalization (DyMAIN) that encourages learning of generalized features that are robust to omni-domain directions and apply DyMAIN to the branches of ADP. Our proposed Phased Mixture-of-Cosines (PMoC) coordinates a mix of stable and turbulent learning rate schedules among branches for further diversified learning. Finally, we realign the feature space between branches with our proposed Dimensional Consistency Metric Loss (DCML). ADP outperforms the state-of-the-art (SOTA) results for multi-source domain generalization and supervised ReID within the same domain. Furthermore, our method demonstrates improvement on a wide range of single-source domain generalization benchmarks, achieving Omni-Domain Generalization over Person ReID tasks.
- Abstract(参考訳): パーソン・リID (Person ReID) は、完全に監督され、ドメインが一般化されたパーソン R e ID において著しく進歩している。
しかし、一方のタスクドメインの転送のために開発されたメソッドは他方によくない。
理想的なPerson ReIDメソッドは、トレーニングやテストに関わるドメインの数に関係なく有効であるべきです。
さらに、対象ドメインからのトレーニングデータから、少なくとも最先端(SOTA)のPerson ReIDメソッドと同様に、実行すべきである。
我々は、このパラダイムをODG-ReIDと呼ぶOmni-Domain Generalization Person ReIDと呼び、互換性のあるバックボーンアーキテクチャを複数の多様な経路に拡張することで、これを実現する方法を提案する。
提案手法であるAligned Divergent Pathways (ADP) は,まずベースアーキテクチャを元のバックボーンのテールをコピーしてマルチブランチ構造に変換する。
DyMAIN(Dynamic Max-Deviance Adaptive Instance Normalization)を設計し、Omniドメイン方向に対して堅牢な一般化特徴の学習を促進し、DyMAINをADPのブランチに適用する。
提案したPMoC(Pysid Mixture-of-Cosines)は,より多様な学習を行うために,枝間で安定な学習率と乱流の学習率の混合を協調する。
最後に,提案した次元距離損失(DCML)を用いて,枝間の特徴空間を同定する。
ADPは、マルチソースドメインの一般化のための最先端(SOTA)結果より優れ、同じドメイン内でReIDを教師する。
さらに,本手法は,Person ReIDタスクに対するOmni-Domain Generalizationを達成し,幅広い単一ソース領域の一般化ベンチマークの改善を示す。
関連論文リスト
- Diverse Deep Feature Ensemble Learning for Omni-Domain Generalized Person Re-identification [30.208890289394994]
Person ReIDメソッドは、異なるデータセット間でトレーニングとテストを行うと、パフォーマンスが大幅に低下する。
本研究は,ドメイン一般化手法が単一データセットのベンチマークにおいて,単一ドメイン管理手法を著しく過小評価していることを明らかにする。
本稿では,自己アンサンブルによる深い特徴の多様性を生かし,ODG-ReIDを実現する方法を提案する。
論文 参考訳(メタデータ) (2024-10-11T02:27:11Z) - Adaptive Domain Generalization via Online Disagreement Minimization [17.215683606365445]
ドメインの一般化は、モデルを目に見えないターゲットのドメインに安全に転送することを目的としています。
AdaODMは、異なるターゲットドメインに対するテスト時にソースモデルを適応的に修正する。
その結果,AdaODMは未確認領域の一般化能力を安定的に向上することがわかった。
論文 参考訳(メタデータ) (2022-08-03T11:51:11Z) - Dynamic Instance Domain Adaptation [109.53575039217094]
教師なしのドメイン適応に関するほとんどの研究は、各ドメインのトレーニングサンプルがドメインラベルを伴っていると仮定している。
適応的な畳み込みカーネルを持つ動的ニューラルネットワークを開発し、各インスタンスにドメインに依存しない深い特徴を適応させるために、インスタンス適応残差を生成する。
我々のモデルはDIDA-Netと呼ばれ、複数の一般的な単一ソースおよび複数ソースのUDAデータセット上で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-03-09T20:05:54Z) - A Novel Mix-normalization Method for Generalizable Multi-source Person
Re-identification [49.548815417844786]
人物再識別(Re-ID)は、監督されたシナリオにおいて大きな成功を収めた。
モデルがソースドメインに過度に適合するため、教師付きモデルを任意の未確認領域に直接転送することは困難である。
ドメイン・アウェア・ミックス正規化(DMN)とドメイン・ウェア・センター正規化(DCR)からなるMixNormを提案する。
論文 参考訳(メタデータ) (2022-01-24T18:09:38Z) - META: Mimicking Embedding via oThers' Aggregation for Generalizable
Person Re-identification [68.39849081353704]
Domain Generalizable (DG) Person Re-identification (ReID)は、トレーニング時に対象のドメインデータにアクセスすることなく、見えないドメインをまたいでテストすることを目的としている。
本稿では,DG ReID のための OThers' Aggregation (META) を用いた Mimicking Embedding という新しい手法を提案する。
論文 参考訳(メタデータ) (2021-12-16T08:06:50Z) - Unsupervised Multi-Source Domain Adaptation for Person Re-Identification [39.817734080890695]
unsupervised domain adaptation (uda) method for person re-idification (re-id) ラベル付きソースデータからラベル付きターゲットデータへの再id知識の転送を目的としている。
マルチソースの概念を UDA person re-ID フィールドに導入し、トレーニング中に複数のソースデータセットを使用する。
提案手法は,最先端のuda person re-idメソッドを高いマージンで上回り,後処理手法を使わずに教師付きアプローチに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2021-04-27T03:33:35Z) - Cluster, Split, Fuse, and Update: Meta-Learning for Open Compound Domain
Adaptive Semantic Segmentation [102.42638795864178]
セマンティックセグメンテーションのための原則的メタラーニングに基づくOCDAアプローチを提案する。
対象ドメインを複数のサブターゲットドメインに,教師なしの方法で抽出した画像スタイルでクラスタリングする。
その後、メタラーニングがデプロイされ、スタイルコードに条件付きでサブターゲットドメイン固有の予測を融合するように学習される。
モデルに依存しないメタラーニング(MAML)アルゴリズムにより,モデルをオンライン更新することを学び,一般化をさらに改善する。
論文 参考訳(メタデータ) (2020-12-15T13:21:54Z) - Multi-Domain Adversarial Feature Generalization for Person
Re-Identification [52.835955258959785]
マルチデータセット特徴一般化ネットワーク(MMFA-AAE)を提案する。
複数のラベル付きデータセットから普遍的なドメイン不変の特徴表現を学習し、それを見えないカメラシステムに一般化することができる。
また、最先端の教師付き手法や教師なしのドメイン適応手法を大きなマージンで超えている。
論文 参考訳(メタデータ) (2020-11-25T08:03:15Z) - Dual Distribution Alignment Network for Generalizable Person
Re-Identification [174.36157174951603]
ドメイン一般化(DG)は、人物再識別(Re-ID)を扱うための有望なソリューションとして機能する
本稿では、複数のソースドメインの分布を選択的に整列させることにより、この問題に対処するDual Distribution Alignment Network(DDAN)を提案する。
大規模なDomain Generalization Re-ID(DG Re-ID)ベンチマークでDDANを評価した。
論文 参考訳(メタデータ) (2020-07-27T00:08:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。