論文の概要: CAS-GAN for Contrast-free Angiography Synthesis
- arxiv url: http://arxiv.org/abs/2410.08490v1
- Date: Fri, 11 Oct 2024 03:31:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 23:34:54.103229
- Title: CAS-GAN for Contrast-free Angiography Synthesis
- Title(参考訳): コントラストフリー血管造影のためのCAS-GAN
- Authors: De-Xing Huang, Xiao-Hu Zhou, Mei-Jiang Gui, Xiao-Liang Xie, Shi-Qi Liu, Shuang-Yi Wang, Hao Li, Tian-Yu Xiang, Zeng-Guang Hou,
- Abstract要約: ヨウ化コントラスト剤は、多くの介入手順で広く利用されるが、患者にかなりの健康リスクをもたらす。
本稿では, 仮想コントラストエージェントとして機能する新しいGANフレームワークであるCAS-GANについて述べる。
- 参考スコア(独自算出の注目度): 15.450328147657531
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Iodinated contrast agents are widely utilized in numerous interventional procedures, yet posing substantial health risks to patients. This paper presents CAS-GAN, a novel GAN framework that serves as a ``virtual contrast agent" to synthesize X-ray angiographies via disentanglement representation learning and vessel semantic guidance, thereby reducing the reliance on iodinated agents during interventional procedures. Specifically, our approach disentangles X-ray angiographies into background and vessel components, leveraging medical prior knowledge. A specialized predictor then learns to map the interrelationships between these components. Additionally, a vessel semantic-guided generator and a corresponding loss function are introduced to enhance the visual fidelity of generated images. Experimental results on the XCAD dataset demonstrate the state-of-the-art performance of our CAS-GAN, achieving a FID of 5.94 and a MMD of 0.017. These promising results highlight CAS-GAN's potential for clinical applications.
- Abstract(参考訳): ヨウ化コントラスト剤は、多くの介入手順で広く利用されるが、患者にかなりの健康リスクをもたらす。
CAS-GANは「仮想コントラスト剤」として機能する新規なGANフレームワークであり, 血管意味指導によるX線アンジオグラフィーを合成し, 介入処理中のヨウ素化剤への依存を低減させる。
具体的には,X線アンギオグラフィーを背景および血管成分に分解し,医学的先行知識を活用する。
特殊予測器は、これらのコンポーネント間の相互関係をマップする。
さらに、生成した画像の視覚的忠実度を高めるために、容器意味誘導ジェネレータとそれに対応する損失関数を導入する。
CAS-GANのFIDは5.94,MDは0.017であった。
これらの有望な結果はCAS-GANの臨床応用の可能性を強調している。
関連論文リスト
- GAN-Based Architecture for Low-dose Computed Tomography Imaging Denoising [1.0138723409205497]
GAN(Generative Adversarial Networks)は低線量CT(LDCT)領域における革命的要素として浮上している。
本総説では,GANに基づくLDCT復調技術の急速な進歩を概観する。
論文 参考訳(メタデータ) (2024-11-14T15:26:10Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Gadolinium dose reduction for brain MRI using conditional deep learning [66.99830668082234]
これらの手法の主な課題は、コントラスト強調の正確な予測と現実的な画像の合成である。
コントラスト前の画像対とコントラスト後の画像対のサブトラクション画像に符号化されたコントラスト信号を利用することで、両課題に対処する。
各種スキャナー,フィールド強度,コントラストエージェントを用いた合成および実データに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2024-03-06T08:35:29Z) - Hypergraph-Transformer (HGT) for Interactive Event Prediction in
Laparoscopic and Robotic Surgery [50.3022015601057]
腹腔内ビデオから外科的ワークフローの重要なインタラクティブな側面を理解し,予測できる予測型ニューラルネットワークを提案する。
我々は,既存の手術用データセットとアプリケーションに対するアプローチを検証し,アクション・トリプレットの検出と予測を行った。
この結果は、非構造的な代替案と比較して、我々のアプローチの優位性を示している。
論文 参考訳(メタデータ) (2024-02-03T00:58:05Z) - VALD-MD: Visual Attribution via Latent Diffusion for Medical Diagnostics [0.0]
医用画像における視覚的属性は、医用画像の診断関連成分を明確にすることを目指している。
本稿では、潜在拡散モデルとドメイン固有大言語モデルを組み合わせた新しい生成的視覚属性手法を提案する。
結果として生じるシステムは、ゼロショット局所化疾患誘導を含む様々な潜在能力を示す。
論文 参考訳(メタデータ) (2024-01-02T19:51:49Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
血管内手術は、電離放射線を用いてカテーテルと血管を可視化するFluoroscopyの黄金標準を用いて行われる。
本研究では、最先端機械学習トランスフォーマアーキテクチャを応用して、軸干渉超音波画像シーケンス中のカテーテルを検出し、セグメント化する手法を提案する。
論文 参考訳(メタデータ) (2023-09-25T19:34:12Z) - C-DARL: Contrastive diffusion adversarial representation learning for
label-free blood vessel segmentation [39.79157116429435]
本稿では,C-DARLモデルと呼ばれる自己教師型血管分割手法を提案する。
本モデルは,多領域血管データの分布を学習する拡散モジュールと生成モジュールから構成される。
有効性を検証するために、C-DARLは冠動脈血管造影、腹部デジタルサブトラクション血管造影、網膜画像などの様々な血管データセットを用いて訓練される。
論文 参考訳(メタデータ) (2023-07-31T23:09:01Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Segmentation of Anatomical Layers and Artifacts in Intravascular
Polarization Sensitive Optical Coherence Tomography Using Attending Physician
and Boundary Cardinality Lost Terms [4.93836246080317]
血管内超音波と光コヒーレンス断層撮影は冠状動脈を特徴付けるために広く利用可能である。
畳み込みニューラルネットワークモデルを提案し,その性能を多項損失関数を用いて最適化する。
モデルは2つの主要なアーティファクトのクラスをセグメンテーションし,血管壁領域内の解剖学的層を検出する。
論文 参考訳(メタデータ) (2021-05-11T15:52:31Z) - Dynamic Coronary Roadmapping via Catheter Tip Tracking in X-ray
Fluoroscopy with Deep Learning Based Bayesian Filtering [4.040013871160853]
経皮的冠動脈インターベンション (PCI) は, 冠動脈造影にX線不透明造影剤を併用したX線アンギオグラムを用いて画像誘導を行うのが一般的である。
本報告では、視覚フィードバックを改善し、PCIにおけるコントラスト使用を減らすために、新しい動的冠ロードマップ作成手法の開発について述べる。
特に,カテーテル先端の高精度かつロバストな追跡のために,畳み込みニューラルネットワークの検出結果と,粒子フィルタリングフレームワークを用いたフレーム間の運動推定を統合した,深層学習に基づくベイズフィルタリング手法を提案する。
論文 参考訳(メタデータ) (2020-01-11T22:08:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。