Balancing Innovation and Privacy: Data Security Strategies in Natural Language Processing Applications
- URL: http://arxiv.org/abs/2410.08553v1
- Date: Fri, 11 Oct 2024 06:05:10 GMT
- Title: Balancing Innovation and Privacy: Data Security Strategies in Natural Language Processing Applications
- Authors: Shaobo Liu, Guiran Liu, Binrong Zhu, Yuanshuai Luo, Linxiao Wu, Rui Wang,
- Abstract summary: This research addresses privacy protection in Natural Language Processing (NLP) by introducing a novel algorithm based on differential privacy.
By introducing a differential privacy mechanism, our model ensures the accuracy and reliability of data analysis results while adding random noise.
The proposed algorithm's efficacy is demonstrated through performance metrics such as accuracy (0.89), precision (0.85), and recall (0.88)
- Score: 3.380276187928269
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This research addresses privacy protection in Natural Language Processing (NLP) by introducing a novel algorithm based on differential privacy, aimed at safeguarding user data in common applications such as chatbots, sentiment analysis, and machine translation. With the widespread application of NLP technology, the security and privacy protection of user data have become important issues that need to be solved urgently. This paper proposes a new privacy protection algorithm designed to effectively prevent the leakage of user sensitive information. By introducing a differential privacy mechanism, our model ensures the accuracy and reliability of data analysis results while adding random noise. This method not only reduces the risk caused by data leakage but also achieves effective processing of data while protecting user privacy. Compared to traditional privacy methods like data anonymization and homomorphic encryption, our approach offers significant advantages in terms of computational efficiency and scalability while maintaining high accuracy in data analysis. The proposed algorithm's efficacy is demonstrated through performance metrics such as accuracy (0.89), precision (0.85), and recall (0.88), outperforming other methods in balancing privacy and utility. As privacy protection regulations become increasingly stringent, enterprises and developers must take effective measures to deal with privacy risks. Our research provides an important reference for the application of privacy protection technology in the field of NLP, emphasizing the need to achieve a balance between technological innovation and user privacy. In the future, with the continuous advancement of technology, privacy protection will become a core element of data-driven applications and promote the healthy development of the entire industry.
Related papers
- DP-CDA: An Algorithm for Enhanced Privacy Preservation in Dataset Synthesis Through Randomized Mixing [0.8739101659113155]
We introduce an effective data publishing algorithm emphDP-CDA.
Our proposed algorithm generates synthetic datasets by randomly mixing data in a class-specific manner, and inducing carefully-tuned randomness to ensure privacy guarantees.
Our results indicate that synthetic datasets produced using the DP-CDA can achieve superior utility compared to those generated by traditional data publishing algorithms, even when subject to the same privacy requirements.
arXiv Detail & Related papers (2024-11-25T06:14:06Z) - Masked Differential Privacy [64.32494202656801]
We propose an effective approach called masked differential privacy (DP), which allows for controlling sensitive regions where differential privacy is applied.
Our method operates selectively on data and allows for defining non-sensitive-temporal regions without DP application or combining differential privacy with other privacy techniques within data samples.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - Privacy-Preserving Collaborative Genomic Research: A Real-Life Deployment and Vision [2.7968600664591983]
This paper presents a privacy-preserving framework for genomic research, developed in collaboration with Lynx.MD.
The framework addresses critical cybersecurity and privacy challenges, enabling the privacy-preserving sharing and analysis of genomic data.
Implementing the framework within Lynx.MD involves encoding genomic data into binary formats and applying noise through controlled perturbation techniques.
arXiv Detail & Related papers (2024-07-12T05:43:13Z) - The Data Minimization Principle in Machine Learning [61.17813282782266]
Data minimization aims to reduce the amount of data collected, processed or retained.
It has been endorsed by various global data protection regulations.
However, its practical implementation remains a challenge due to the lack of a rigorous formulation.
arXiv Detail & Related papers (2024-05-29T19:40:27Z) - Synergizing Privacy and Utility in Data Analytics Through Advanced Information Theorization [2.28438857884398]
We introduce three sophisticated algorithms: a Noise-Infusion Technique tailored for high-dimensional image data, a Variational Autoencoder (VAE) for robust feature extraction and an Expectation Maximization (EM) approach optimized for structured data privacy.
Our methods significantly reduce mutual information between sensitive attributes and transformed data, thereby enhancing privacy.
The research contributes to the field by providing a flexible and effective strategy for deploying privacy-preserving algorithms across various data types.
arXiv Detail & Related papers (2024-04-24T22:58:42Z) - AI-Driven Anonymization: Protecting Personal Data Privacy While
Leveraging Machine Learning [5.015409508372732]
This paper focuses on personal data privacy protection and the promotion of anonymity as its core research objectives.
It achieves personal data privacy protection and detection through the use of machine learning's differential privacy protection algorithm.
The paper also addresses existing challenges in machine learning related to privacy and personal data protection, offers improvement suggestions, and analyzes factors impacting datasets to enable timely personal data privacy detection and protection.
arXiv Detail & Related papers (2024-02-27T04:12:25Z) - State-of-the-Art Approaches to Enhancing Privacy Preservation of Machine Learning Datasets: A Survey [0.0]
This paper examines the evolving landscape of machine learning (ML) and its profound impact across various sectors.
It focuses on the emerging field of Privacy-preserving Machine Learning (PPML)
As ML applications become increasingly integral to industries like telecommunications, financial technology, and surveillance, they raise significant privacy concerns.
arXiv Detail & Related papers (2024-02-25T17:31:06Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
We propose a general learning framework for the protection mechanisms that protects privacy via distorting model parameters.
It can achieve personalized utility-privacy trade-off for each model parameter, on each client, at each communication round in federated learning.
arXiv Detail & Related papers (2023-05-24T13:44:02Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability.
We study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP)
More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms.
arXiv Detail & Related papers (2023-02-19T16:58:53Z) - Differentially Private Stochastic Gradient Descent with Low-Noise [49.981789906200035]
Modern machine learning algorithms aim to extract fine-grained information from data to provide accurate predictions, which often conflicts with the goal of privacy protection.
This paper addresses the practical and theoretical importance of developing privacy-preserving machine learning algorithms that ensure good performance while preserving privacy.
arXiv Detail & Related papers (2022-09-09T08:54:13Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
Decentralized optimization is the basic building block of modern collaborative machine learning, distributed estimation and control, and large-scale sensing.
Since involved data, privacy protection has become an increasingly pressing need in the implementation of decentralized optimization algorithms.
arXiv Detail & Related papers (2022-05-08T14:38:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.