論文の概要: QEFT: Quantization for Efficient Fine-Tuning of LLMs
- arxiv url: http://arxiv.org/abs/2410.08661v1
- Date: Fri, 11 Oct 2024 09:39:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 22:45:00.719054
- Title: QEFT: Quantization for Efficient Fine-Tuning of LLMs
- Title(参考訳): QEFT: LLMの高効率微調整のための量子化
- Authors: Changhun Lee, Jun-gyu Jin, Younghyun Cho, Eunhyeok Park,
- Abstract要約: 我々はQEFT(Quantization for Effient Fine-Tuning)と呼ばれる新しい手法を提案する。
QEFTは推論と微調整の両方を加速し、堅牢な理論的基盤によってサポートされ、優れたハードウェア互換性を維持している。
実験の結果,QEFTは完全精度パラメータ効率の良い微調整の品質と汎用性に一致していることがわかった。
- 参考スコア(独自算出の注目度): 9.446971590056945
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid growth in the use of fine-tuning for large language models (LLMs), optimizing fine-tuning while keeping inference efficient has become highly important. However, this is a challenging task as it requires improvements in all aspects, including inference speed, fine-tuning speed, memory consumption, and, most importantly, model quality. Previous studies have attempted to achieve this by combining quantization with fine-tuning, but they have failed to enhance all four aspects simultaneously. In this study, we propose a new lightweight technique called Quantization for Efficient Fine-Tuning (QEFT). QEFT accelerates both inference and fine-tuning, is supported by robust theoretical foundations, offers high flexibility, and maintains good hardware compatibility. Our extensive experiments demonstrate that QEFT matches the quality and versatility of full-precision parameter-efficient fine-tuning, while using fewer resources. Our code is available at https://github.com/xvyaward/qeft.
- Abstract(参考訳): 大規模言語モデル(LLM)のファインチューニングの利用が急速に増加し,推論効率を保ちながらファインチューニングを最適化することが重要である。
しかし、推論速度、微調整速度、メモリ消費、そして最も重要なのはモデル品質など、あらゆる面で改善を必要とするため、これは難しいタスクである。
従来の研究では、量子化と微調整を組み合わせることでこれを達成しようとしたが、4つの側面を同時に拡張することはできなかった。
本研究では,QEFT(Quantization for Efficient Fine-Tuning)と呼ばれる軽量な手法を提案する。
QEFTは推論と微調整の両方を加速し、堅牢な理論基盤によってサポートされ、高い柔軟性を提供し、優れたハードウェア互換性を維持している。
本実験により,QEFTは,少ない資源を使用しながら,完全精度パラメータ効率の高い微調整の品質と汎用性に適合することを示した。
私たちのコードはhttps://github.com/xvyaward/qeft.comから入手可能です。
関連論文リスト
- Layer-wise Importance Matters: Less Memory for Better Performance in Parameter-efficient Fine-tuning of Large Language Models [19.163639128631534]
Importance-Aware Sparse Tuning (IST) は、様々なPEFTメソッドと互換性があり、層ごとに動作する。
ISTはPEFTモジュールで選択したレイヤを動的に更新し、メモリ要求を減らした。
論文 参考訳(メタデータ) (2024-10-15T16:53:26Z) - ETHER: Efficient Finetuning of Large-Scale Models with Hyperplane Reflections [59.839926875976225]
本稿では,HypErplane Reflectionsによる高効率微調整を行うETHER変換ファミリを提案する。
特に,既存のPEFT法と極めて少ないパラメータで一致または性能を向上するEtheRと緩和ETHER+を導入する。
論文 参考訳(メタデータ) (2024-05-30T17:26:02Z) - Context-PEFT: Efficient Multi-Modal, Multi-Task Fine-Tuning [12.648711621637663]
この論文は小説を紹介します。
COCO-Efficient Fine-Tuning (PEFT) framework for multi-modal, multi-task transfer learning with pre-trained language model。
トークンのドメインに基づいて異なる適応パラメータ群を学習するContext-PEFTを提案する。
提案手法はキャプションタスクで評価され、類似したデータ制約下での完全な微調整よりも優れる。
論文 参考訳(メタデータ) (2023-12-14T13:00:24Z) - Fast Trainable Projection for Robust Fine-Tuning [36.51660287722338]
ロバスト微調整は、競争力のある分散内分散(ID)性能を達成することを目的としている。
プロジェクションベースの微調整は頑健な微調整に成功している。
Fast Trainable Projectionはプロジェクションベースのファインチューニングアルゴリズムである。
論文 参考訳(メタデータ) (2023-10-29T22:52:43Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
フェデレートラーニング(FL)は、分散データとの協調モデルトレーニングを可能にする、有望なパラダイムである。
LLM(Large Language Models)のトレーニングプロセスは一般的に重要なパラメータの更新を引き起こす。
本稿では,性能と効率を同時に向上する効率的な部分的プロンプトチューニング手法を提案する。
論文 参考訳(メタデータ) (2023-10-23T16:37:59Z) - QFT: Quantized Full-parameter Tuning of LLMs with Affordable Resources [37.265708531464746]
大規模言語モデル(LLM)は、さまざまな自然言語処理タスクに顕著な影響を与えている。
これらのトレーニング済みモデルを下流データセットに微調整することで、さらなる大幅なパフォーマンス向上が達成されるが、このプロセスは異常なリソース要求のために困難だった。
性能を損なうことなくメモリ効率のよい微調整を可能にするLLMのための新しい量子フルパラメータチューニングフレームワークQFTを提案する。
論文 参考訳(メタデータ) (2023-10-11T02:47:40Z) - EfficientDM: Efficient Quantization-Aware Fine-Tuning of Low-Bit Diffusion Models [21.17675493267517]
ポストトレーニング量子化(PTQ)と量子化学習(QAT)は、拡散モデルを圧縮・加速する2つの主要なアプローチである。
我々は、PTQのような効率でQATレベルの性能を実現するために、EfficientDMと呼ばれる低ビット拡散モデルのためのデータフリーかつパラメータ効率の微調整フレームワークを導入する。
提案手法は, PTQに基づく拡散モデルにおいて, 同様の時間とデータ効率を保ちながら, 性能を著しく向上させる。
論文 参考訳(メタデータ) (2023-10-05T02:51:53Z) - OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models [57.27101446992148]
大規模言語モデル(LLM)は自然言語処理タスクに革命をもたらした。
近年のPTQ法はメモリフットプリントの削減とLLMの計算効率の向上に有効である。
多様な量子化設定において優れた性能を実現するLLMのOmnidirectly calibrated Quantization手法を提案する。
論文 参考訳(メタデータ) (2023-08-25T02:28:35Z) - Parameter-efficient Tuning of Large-scale Multimodal Foundation Model [68.24510810095802]
我々はこれらの課題を克服するために、クロスモーダル転送(Aurora)のための優雅なプロンプトフレームワークを提案する。
既存のアーキテクチャの冗長性を考慮すると、まずモード近似を用いて0.1Mのトレーニング可能なパラメータを生成し、マルチモーダルプロンプトチューニングを実装する。
6つのクロスモーダルベンチマークの徹底的な評価は、最先端のベンチマークを上回るだけでなく、完全な微調整アプローチよりも優れていることを示している。
論文 参考訳(メタデータ) (2023-05-15T06:40:56Z) - AutoPEFT: Automatic Configuration Search for Parameter-Efficient
Fine-Tuning [77.61565726647784]
ニューラルアーキテクチャ検索の進歩により,自動PEFT設定選択のためのAutoPEFTを提案する。
本稿では,AutoPEFTが検出した構成が既存のPEFT法よりも大幅に優れており,FFTと同等かそれ以上であることを示す。
論文 参考訳(メタデータ) (2023-01-28T08:51:23Z) - Amortized Auto-Tuning: Cost-Efficient Transfer Optimization for
Hyperparameter Recommendation [83.85021205445662]
本稿では,機械学習モデルのチューニングを高速化する自動チューニング(AT2)を提案する。
マルチタスクマルチ忠実ベイズ最適化フレームワークの徹底的な解析を行い、最適なインスタンス化-アモータイズ自動チューニング(AT2)を実現する。
論文 参考訳(メタデータ) (2021-06-17T00:01:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。