DistDD: Distributed Data Distillation Aggregation through Gradient Matching
- URL: http://arxiv.org/abs/2410.08665v1
- Date: Fri, 11 Oct 2024 09:43:35 GMT
- Title: DistDD: Distributed Data Distillation Aggregation through Gradient Matching
- Authors: Peiran Wang, Haohan Wang,
- Abstract summary: DistDD is a novel approach within the federated learning framework that reduces the need for repetitive communication by distilling data directly on clients' devices.
We provide a detailed convergence proof of the DistDD algorithm, reinforcing its mathematical stability and reliability for practical applications.
- Score: 14.132062317010847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce DistDD, a novel approach within the federated learning framework that reduces the need for repetitive communication by distilling data directly on clients' devices. Unlike traditional federated learning that requires iterative model updates across nodes, DistDD facilitates a one-time distillation process that extracts a global distilled dataset, maintaining the privacy standards of federated learning while significantly cutting down communication costs. By leveraging the DistDD's distilled dataset, the developers of the FL can achieve just-in-time parameter tuning and neural architecture search over FL without repeating the whole FL process multiple times. We provide a detailed convergence proof of the DistDD algorithm, reinforcing its mathematical stability and reliability for practical applications. Our experiments demonstrate the effectiveness and robustness of DistDD, particularly in non-i.i.d. and mislabeled data scenarios, showcasing its potential to handle complex real-world data challenges distinctively from conventional federated learning methods. We also evaluate DistDD's application in the use case and prove its effectiveness and communication-savings in the NAS use case.
Related papers
- Dataset Distillation from First Principles: Integrating Core Information Extraction and Purposeful Learning [10.116674195405126]
We argue that a precise characterization of the underlying optimization problem must specify the inference task associated with the application of interest.
Our formalization reveals novel applications of DD across different modeling environments.
We present numerical results for two case studies important in contemporary settings.
arXiv Detail & Related papers (2024-09-02T18:11:15Z) - Communication-Efficient Distributed Deep Learning via Federated Dynamic Averaging [1.4748100900619232]
Federated Dynamic Averaging (FDA) is a communication-efficient DDL strategy.
FDA reduces communication cost by orders of magnitude, compared to both traditional and cutting-edge algorithms.
arXiv Detail & Related papers (2024-05-31T16:34:11Z) - FLIGAN: Enhancing Federated Learning with Incomplete Data using GAN [1.5749416770494706]
Federated Learning (FL) provides a privacy-preserving mechanism for distributed training of machine learning models on networked devices.
We propose FLIGAN, a novel approach to address the issue of data incompleteness in FL.
Our methodology adheres to FL's privacy requirements by generating synthetic data in a federated manner without sharing the actual data in the process.
arXiv Detail & Related papers (2024-03-25T16:49:38Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
Node-level graph anomaly detection (GAD) plays a critical role in identifying anomalous nodes from graph-structured data in domains such as medicine, social networks, and e-commerce.
We introduce a simple method termed PREprocessing and Matching (PREM for short) to improve the efficiency of GAD.
Our approach streamlines GAD, reducing time and memory consumption while maintaining powerful anomaly detection capabilities.
arXiv Detail & Related papers (2023-10-18T02:59:57Z) - Dataset Distillation: A Comprehensive Review [76.26276286545284]
dataset distillation (DD) aims to derive a much smaller dataset containing synthetic samples, based on which the trained models yield performance comparable with those trained on the original dataset.
This paper gives a comprehensive review and summary of recent advances in DD and its application.
arXiv Detail & Related papers (2023-01-17T17:03:28Z) - Prompting to Distill: Boosting Data-Free Knowledge Distillation via
Reinforced Prompt [52.6946016535059]
Data-free knowledge distillation (DFKD) conducts knowledge distillation via eliminating the dependence of original training data.
We propose a prompt-based method, termed as PromptDFD, that allows us to take advantage of learned language priors.
As shown in our experiments, the proposed method substantially improves the synthesis quality and achieves considerable improvements on distillation performance.
arXiv Detail & Related papers (2022-05-16T08:56:53Z) - FEDIC: Federated Learning on Non-IID and Long-Tailed Data via Calibrated
Distillation [54.2658887073461]
Dealing with non-IID data is one of the most challenging problems for federated learning.
This paper studies the joint problem of non-IID and long-tailed data in federated learning and proposes a corresponding solution called Federated Ensemble Distillation with Imbalance (FEDIC)
FEDIC uses model ensemble to take advantage of the diversity of models trained on non-IID data.
arXiv Detail & Related papers (2022-04-30T06:17:36Z) - Towards Fast and Accurate Federated Learning with non-IID Data for
Cloud-Based IoT Applications [22.107854601448906]
Federated Learning (FL) is becoming popular in Internet of Things (IoT) design.
When the data collected by IoT devices are skewed in a non-independent and identically distributed (non-IID) manner, the accuracy of vanilla FL method cannot be guaranteed.
This paper proposes a novel data-based device grouping approach that can effectively reduce the disadvantages of weight divergence during the training of non-IID data.
arXiv Detail & Related papers (2022-01-29T06:49:08Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Efficient Ring-topology Decentralized Federated Learning with Deep
Generative Models for Industrial Artificial Intelligent [13.982904025739606]
We propose a ring-topogy based decentralized federated learning scheme for Deep Generative Models (DGMs)
Our RDFL schemes provides communication efficiency and maintain training performance to boost DGMs in target IIoT tasks.
In addition, InterPlanetary File System(IPFS) is introduced to further improve communication efficiency and FL security.
arXiv Detail & Related papers (2021-04-15T08:09:54Z) - Learning to Count in the Crowd from Limited Labeled Data [109.2954525909007]
We focus on reducing the annotation efforts by learning to count in the crowd from limited number of labeled samples.
Specifically, we propose a Gaussian Process-based iterative learning mechanism that involves estimation of pseudo-ground truth for the unlabeled data.
arXiv Detail & Related papers (2020-07-07T04:17:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.