論文の概要: Efficiently Scanning and Resampling Spatio-Temporal Tasks with Irregular Observations
- arxiv url: http://arxiv.org/abs/2410.08681v1
- Date: Fri, 11 Oct 2024 10:11:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 22:35:12.916245
- Title: Efficiently Scanning and Resampling Spatio-Temporal Tasks with Irregular Observations
- Title(参考訳): 不規則観測を伴う時空間課題の効率的な走査と再サンプリング
- Authors: Bryce Ferenczi, Michael Burke, Tom Drummond,
- Abstract要約: 本稿では,2次元の潜伏状態と観測値の交叉アテンションを交互に交互に行うアルゴリズムを提案する。
提案アルゴリズムは,従来の手法と比較して,パラメータカウントが低く,トレーニングや推論が高速である場合に比較して精度が向上する。
- 参考スコア(独自算出の注目度): 13.491183255489396
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Various works have aimed at combining the inference efficiency of recurrent models and training parallelism of multi-head attention for sequence modeling. However, most of these works focus on tasks with fixed-dimension observation spaces, such as individual tokens in language modeling or pixels in image completion. To handle an observation space of varying size, we propose a novel algorithm that alternates between cross-attention between a 2D latent state and observation, and a discounted cumulative sum over the sequence dimension to efficiently accumulate historical information. We find this resampling cycle is critical for performance. To evaluate efficient sequence modeling in this domain, we introduce two multi-agent intention tasks: simulated agents chasing bouncing particles and micromanagement analysis in professional StarCraft II games. Our algorithm achieves comparable accuracy with a lower parameter count, faster training and inference compared to existing methods.
- Abstract(参考訳): 繰り返しモデルの推論効率と、シーケンスモデリングのためのマルチヘッドアテンションの訓練の並列性を組み合わせることを目的としている。
しかしながら、これらの研究の多くは、言語モデリングにおける個々のトークンや画像補完におけるピクセルといった、固定次元の観測空間でのタスクに焦点を当てている。
異なる大きさの観測空間を扱うために,2次元の潜伏状態と観測状態の交叉位置を交互に交互に扱う新しいアルゴリズムを提案する。
この再サンプリングサイクルはパフォーマンスに不可欠です。
この領域における効率的なシーケンスモデリングを評価するために,本研究では,バウンディング粒子を追尾するシミュレーションエージェントと,プロのStarCraft IIゲームにおけるマイクロマネジメント分析という2つのマルチエージェント意図タスクを導入する。
提案アルゴリズムは,従来の手法と比較して,パラメータカウントが低く,トレーニングや推論が高速である場合に比較して精度が向上する。
関連論文リスト
- Deciphering Movement: Unified Trajectory Generation Model for Multi-Agent [53.637837706712794]
任意の軌道をマスク入力として処理する統一軌道生成モデルUniTrajを提案する。
具体的には,空間特徴抽出のためのトランスフォーマーエンコーダ内に埋め込まれたゴースト空間マスキング(GSM)モジュールを導入する。
バスケットボール-U,サッカー-U,サッカー-Uの3つの実用的なスポーツゲームデータセットをベンチマークして評価を行った。
論文 参考訳(メタデータ) (2024-05-27T22:15:23Z) - Improving Efficiency of Diffusion Models via Multi-Stage Framework and Tailored Multi-Decoder Architectures [12.703947839247693]
拡散モデルは強力な深層生成ツールとして登場し、様々な応用に優れている。
しかし、その顕著な生成性能は、遅いトレーニングとサンプリングによって妨げられている。
これは、広範囲の前方および逆拡散軌道を追跡する必要があるためである。
本稿では,これらの課題に対処するための経験的知見から着想を得た多段階フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-14T17:48:09Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
本稿では,各トラックレットを連続ストリームとみなす新しいアプローチを提案する。
各タイムスタンプでは、現在のフレームだけがネットワークに送られ、メモリバンクに格納された複数フレームの履歴機能と相互作用する。
頑健な追跡のためのマルチフレーム機能の利用性を高めるために,コントラッシブシーケンス強化戦略を提案する。
論文 参考訳(メタデータ) (2023-03-14T02:58:27Z) - Continuous-time convolutions model of event sequences [46.3471121117337]
イベントシーケンスは不均一でスパースであり、従来のモデルは不適当である。
我々は、時間とともに一様でない事象の発生を処理するために設計された効率的な畳み込みニューラルネットワークに基づくCOTICを提案する。
COTICは、次のイベント時間とタイプを予測する際に既存のモデルよりも優れており、最も近いライバルの3.714と比較して平均1.5のランクに達している。
論文 参考訳(メタデータ) (2023-02-13T10:34:51Z) - Spatio-Temporal Point Process for Multiple Object Tracking [30.041104276095624]
多重オブジェクト追跡(MOT)は、連続するフレーム間の検出対象の関係をモデル化し、それらを異なる軌道にマージすることに焦点を当てている。
本稿では,物体を軌道に関連付ける前に,ノイズを効果的に予測し,マスクアウトし,検出結果を混乱させる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-05T18:14:08Z) - The impact of memory on learning sequence-to-sequence tasks [6.603326895384289]
自然言語処理におけるニューラルネットワークの最近の成功は、シーケンシャル・ツー・シーケンス(seq2seq)タスクに新たな注目を集めている。
本稿では,シークエンスにおけるメモリの次数,すなわち非マルコビアン性に対する明示的な制御の利点を生かしたSeq2seqタスクのモデルを提案する。
論文 参考訳(メタデータ) (2022-05-29T14:57:33Z) - Time Series Anomaly Detection by Cumulative Radon Features [32.36217153362305]
本研究は,分布距離測定と組み合わせた場合,浅部特徴が十分であると主張する。
提案手法は,各時系列を高次元的特徴分布としてモデル化する。
累積ラドン特徴量を用いて各時系列をパラメータ化することにより、正規時系列の分布を効率的に効果的にモデル化できることを示す。
論文 参考訳(メタデータ) (2022-02-08T18:58:53Z) - Self-Attention Neural Bag-of-Features [103.70855797025689]
我々は最近導入された2D-Attentionの上に構築し、注意学習方法論を再構築する。
本稿では,関連情報を強調した2次元目視マスクを学習する機能・時間的アテンション機構を提案する。
論文 参考訳(メタデータ) (2022-01-26T17:54:14Z) - Set Based Stochastic Subsampling [85.5331107565578]
本稿では,2段階間ニューラルサブサンプリングモデルを提案する。
画像分類,画像再構成,機能再構築,少数ショット分類など,様々なタスクにおいて,低いサブサンプリング率で関連ベースラインを上回っていることを示す。
論文 参考訳(メタデータ) (2020-06-25T07:36:47Z) - Unsupervised Learning of Visual Features by Contrasting Cluster
Assignments [57.33699905852397]
ペア比較の計算を必要とせず,コントラスト的手法を生かしたオンラインアルゴリズムSwaVを提案する。
本手法では,クラスタ割り当て間の一貫性を保ちながら,同時にデータをクラスタ化する。
我々の方法は大規模で小さなバッチで訓練でき、無制限のデータにスケールできる。
論文 参考訳(メタデータ) (2020-06-17T14:00:42Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。