論文の概要: Gradients Stand-in for Defending Deep Leakage in Federated Learning
- arxiv url: http://arxiv.org/abs/2410.08734v1
- Date: Fri, 11 Oct 2024 11:44:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 22:15:28.799893
- Title: Gradients Stand-in for Defending Deep Leakage in Federated Learning
- Title(参考訳): フェデレートラーニングにおける深層漏洩防止のためのグラディエント
- Authors: H. Yi, H. Ren, C. Hu, Y. Li, J. Deng, X. Xie,
- Abstract要約: 本研究は, AdaDefense という勾配漏洩防止を目的とした, 効率的かつ効率的な手法を提案する。
提案手法は, 勾配リークを効果的に防止するだけでなく, モデル全体の性能に大きな影響を与えないことを保証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) has become a cornerstone of privacy protection, shifting the paradigm towards localizing sensitive data while only sending model gradients to a central server. This strategy is designed to reinforce privacy protections and minimize the vulnerabilities inherent in centralized data storage systems. Despite its innovative approach, recent empirical studies have highlighted potential weaknesses in FL, notably regarding the exchange of gradients. In response, this study introduces a novel, efficacious method aimed at safeguarding against gradient leakage, namely, ``AdaDefense". Following the idea that model convergence can be achieved by using different types of optimization methods, we suggest using a local stand-in rather than the actual local gradient for global gradient aggregation on the central server. This proposed approach not only effectively prevents gradient leakage, but also ensures that the overall performance of the model remains largely unaffected. Delving into the theoretical dimensions, we explore how gradients may inadvertently leak private information and present a theoretical framework supporting the efficacy of our proposed method. Extensive empirical tests, supported by popular benchmark experiments, validate that our approach maintains model integrity and is robust against gradient leakage, marking an important step in our pursuit of safe and efficient FL.
- Abstract(参考訳): フェデレートラーニング(FL)はプライバシ保護の基盤となり、モデル勾配を中央サーバに送信するのみながら、機密データのローカライズにパラダイムをシフトしている。
この戦略は、プライバシ保護を強化し、集中型データストレージシステムに固有の脆弱性を最小限にするように設計されている。
その革新的なアプローチにもかかわらず、最近の実証研究は、特に勾配の交換に関して、FLの潜在的な弱点を強調している。
そこで本研究では,勾配漏れ防止,すなわち<AdaDefense</a>の新たな効果的手法を提案する。
モデル収束は、異なるタイプの最適化手法を用いて達成できるという考えに従えば、中央サーバ上のグローバル勾配集約のための実際の局所勾配ではなく、局所的なスタンドインを使うことを提案する。
提案手法は, 勾配リークを効果的に防止するだけでなく, モデル全体の性能に大きな影響を与えないことを保証する。
提案手法の有効性を裏付ける理論的枠組みを提示する。
一般的なベンチマーク実験によって支持された広範囲な実証実験により、我々のアプローチがモデル完全性を維持し、勾配リークに対して堅牢であることが確認され、安全かつ効率的なFLを追求する上で重要なステップとなる。
関連論文リスト
- FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses [50.921333548391345]
フェデレーテッド・ラーニング(Federated Learning)は、分散型機械学習パラダイムをプライバシ保護するものだ。
近年の研究では、Deep Leakageと呼ばれる勾配技術によって、民間の真実データを復元できることが判明している。
本稿では、Deep Leakage攻撃と防御を評価するための総合的なベンチマークであるFEDLAD Framework(Federated Evaluation of Deep Leakage Attacks and Defenses)を紹介する。
論文 参考訳(メタデータ) (2024-11-05T11:42:26Z) - Anti-Collapse Loss for Deep Metric Learning Based on Coding Rate Metric [99.19559537966538]
DMLは、分類、クラスタリング、検索といった下流タスクのための識別可能な高次元埋め込み空間を学習することを目的としている。
埋め込み空間の構造を維持し,特徴の崩壊を避けるために,反崩壊損失と呼ばれる新しい損失関数を提案する。
ベンチマークデータセットの総合実験により,提案手法が既存の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-07-03T13:44:20Z) - Enhancing Security in Federated Learning through Adaptive
Consensus-Based Model Update Validation [2.28438857884398]
本稿では,ラベルフリップ攻撃に対して,FL(Federated Learning)システムを構築するための高度なアプローチを提案する。
本稿では,適応的しきい値設定機構と統合されたコンセンサスに基づく検証プロセスを提案する。
以上の結果から,FLシステムのレジリエンスを高め,ラベルフリップ攻撃の顕著な緩和効果が示唆された。
論文 参考訳(メタデータ) (2024-03-05T20:54:56Z) - A Theoretical Insight into Attack and Defense of Gradient Leakage in
Transformer [11.770915202449517]
グラディエント(DLG)攻撃によるDeep Leakageは、交換勾配を検査してセンシティブなトレーニングデータを抽出する方法として、広く普及している。
本研究は, 変圧器モデルに特に適用した場合の勾配漏洩法を包括的に解析する。
論文 参考訳(メタデータ) (2023-11-22T09:58:01Z) - GIFD: A Generative Gradient Inversion Method with Feature Domain
Optimization [52.55628139825667]
Federated Learning(FL)は、クライアントのプライバシを保護するための有望な分散機械学習フレームワークとして登場した。
近年の研究では、事前学習された生成逆ネットワーク(GAN)を事前知識として活用することにより、攻撃者が共有勾配を逆転し、FLシステムに対する機密データを回復できることが示されている。
textbfGradient textbfInversion over textbfFeature textbfDomains (GIFD)を提案する。
論文 参考訳(メタデータ) (2023-08-09T04:34:21Z) - Gradient Leakage Defense with Key-Lock Module for Federated Learning [14.411227689702997]
Federated Learning(FL)は、プライバシ保護機械学習アプローチとして広く採用されている。
最近の発見は、プライバシーが侵害され、共有勾配から機密情報が回収される可能性があることを示している。
秘密鍵ロックモジュールを用いて任意のモデルアーキテクチャをセキュアにするための新しい勾配リーク防御手法を提案する。
論文 参考訳(メタデータ) (2023-05-06T16:47:52Z) - Refiner: Data Refining against Gradient Leakage Attacks in Federated
Learning [28.76786159247595]
グラデーションリーク攻撃は クライアントのアップロードした勾配を利用して 機密データを再構築する
本稿では,従来の勾配摂動から分離した新しい防御パラダイムについて検討する。
プライバシ保護とパフォーマンス維持のための2つのメトリクスを共同で最適化するRefinerを設計する。
論文 参考訳(メタデータ) (2022-12-05T05:36:15Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - Query-Efficient Black-box Adversarial Attacks Guided by a Transfer-based
Prior [50.393092185611536]
対象モデルの勾配にアクセスできることなく、敵が敵の例を作らなければならないブラックボックスの敵設定を考える。
従来の手法では、代用ホワイトボックスモデルの転送勾配を用いたり、モデルクエリのフィードバックに基づいて真の勾配を近似しようとした。
偏りサンプリングと勾配平均化に基づく2つの事前誘導型ランダム勾配フリー(PRGF)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-13T04:06:27Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
フェデレートラーニング(FL)は、生データを共有することなく、AIモデルの協調トレーニングを可能にする。
モデル勾配からのディープニューラルネットワークの反転に関する最近の研究は、トレーニングデータの漏洩を防止するためのFLの安全性に関する懸念を提起した。
本研究では,本論文で提示されたこれらの攻撃が実際のFLユースケースでは実行不可能であることを示し,新たなベースライン攻撃を提供する。
論文 参考訳(メタデータ) (2022-02-14T18:33:12Z) - FedBoosting: Federated Learning with Gradient Protected Boosting for
Text Recognition [7.988454173034258]
フェデレートラーニング(FL)フレームワークは、データの集中化やデータオーナ間の共有なしに、共有モデルを協調的に学習することを可能にする。
本稿では,非独立性および非独立性分散(Non-IID)データに基づくジョイントモデルの一般化能力について述べる。
本稿では,FLの一般化と勾配リーク問題に対処する新しいブースティングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-14T18:47:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。