論文の概要: Causal machine learning for predicting treatment outcomes
- arxiv url: http://arxiv.org/abs/2410.08770v1
- Date: Fri, 11 Oct 2024 12:39:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 22:05:43.625507
- Title: Causal machine learning for predicting treatment outcomes
- Title(参考訳): 治療結果予測のための因果機械学習
- Authors: Stefan Feuerriegel, Dennis Frauen, Valentyn Melnychuk, Jonas Schweisthal, Konstantin Hess, Alicia Curth, Stefan Bauer, Niki Kilbertus, Isaac S. Kohane, Mihaela van der Schaar,
- Abstract要約: Causal Machine Learning (ML)は、治療結果を予測するフレキシブルでデータ駆動の方法を提供する。
因果MLの主な利点は、個別化された治療効果を推定できることである。
- 参考スコア(独自算出の注目度): 75.13093479526151
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal machine learning (ML) offers flexible, data-driven methods for predicting treatment outcomes including efficacy and toxicity, thereby supporting the assessment and safety of drugs. A key benefit of causal ML is that it allows for estimating individualized treatment effects, so that clinical decision-making can be personalized to individual patient profiles. Causal ML can be used in combination with both clinical trial data and real-world data, such as clinical registries and electronic health records, but caution is needed to avoid biased or incorrect predictions. In this Perspective, we discuss the benefits of causal ML (relative to traditional statistical or ML approaches) and outline the key components and steps. Finally, we provide recommendations for the reliable use of causal ML and effective translation into the clinic.
- Abstract(参考訳): 因果機械学習(ML)は、有効性と毒性を含む治療結果を予測するフレキシブルでデータ駆動の方法を提供し、薬物の評価と安全性をサポートする。
因果MLの重要な利点は、個別化された治療効果を推定できるため、臨床的な意思決定を個々の患者プロファイルにパーソナライズすることができることである。
因果MLは、臨床治験データと、臨床登録や電子健康記録などの実世界のデータの両方と組み合わせて使用することができるが、バイアスや誤予測を避けるには注意が必要である。
本稿では、因果ML(従来の統計学やMLのアプローチ)の利点を論じ、主要な構成要素と手順を概説する。
最後に, 因果MLの信頼性とクリニックへの効果的な翻訳を推奨する。
関連論文リスト
- Measuring Variable Importance in Individual Treatment Effect Estimation with High Dimensional Data [35.104681814241104]
因果機械学習(ML)は、個々の治療効果を推定するための強力なツールを提供する。
ML手法は、医療応用にとって重要な解釈可能性の重要な課題に直面している。
統計的に厳密な変数重要度評価のための条件置換重要度(CPI)法に基づく新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-23T11:44:07Z) - Estimating Causal Effects with Double Machine Learning -- A Method Evaluation [5.904095466127043]
DML(Double/Debiased Machine Learning)の最も顕著な手法の1つについてレビューする。
この結果から, DML 内でのフレキシブルな機械学習アルゴリズムの適用により, 様々な非線形共起関係の調整が向上することが示唆された。
大気汚染が住宅価格に与える影響を推定すると、DMLの見積もりは柔軟性の低い方法の推定よりも一貫して大きいことが分かる。
論文 参考訳(メタデータ) (2024-03-21T13:21:33Z) - Interpretable Causal Inference for Analyzing Wearable, Sensor, and Distributional Data [62.56890808004615]
本研究では,信頼性とロバストな意思決定を確実にする,分散データ解析の解釈可能な手法を開発した。
ADD MALTSの有用性について,糖尿病リスク軽減のための連続グルコースモニターの有効性について検討した。
論文 参考訳(メタデータ) (2023-12-17T00:42:42Z) - Causal prediction models for medication safety monitoring: The diagnosis
of vancomycin-induced acute kidney injury [0.282736966249181]
入院患者の有害薬物事象(ADE)の振り返り診断の現在のベストプラクティスは、完全な患者のチャートレビューと、医療専門家による公式な因果性評価に依存している。
ここでは、観測データを用いた因果モデリング手法を開拓し、因果確率(PC)の低い境界を推定する。
集中治療患者におけるバンコマイシン誘発急性腎障害の臨床応用例について検討した。
論文 参考訳(メタデータ) (2023-11-15T17:29:24Z) - Mixed-Integer Projections for Automated Data Correction of EMRs Improve
Predictions of Sepsis among Hospitalized Patients [7.639610349097473]
本稿では,領域制約として臨床専門知識をシームレスに統合する革新的プロジェクションに基づく手法を提案する。
我々は、患者データの健全な範囲を規定する制約から補正されたデータの距離を測定する。
AUROCは0.865で、精度は0.922で、従来のMLモデルを上回る。
論文 参考訳(メタデータ) (2023-08-21T15:14:49Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
機械学習は医療の改善に大いに貢献するが、その利用が健康格差を広めたり増幅したりしないことを確実にすることは重要である。
アルゴリズムの不公平性の潜在的な要因の1つ、ショートカット学習は、トレーニングデータにおける不適切な相関に基づいてMLモデルが予測した時に発生する。
マルチタスク学習を用いて,臨床MLシステムの公平性評価の一環として,ショートカット学習の評価と緩和を行う手法を提案する。
論文 参考訳(メタデータ) (2022-07-21T09:35:38Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Reinforcement learning and Bayesian data assimilation for model-informed
precision dosing in oncology [0.0]
現在の戦略はモデルインフォームドドッキングテーブルで構成されている。
ベイジアンデータ同化と/または強化学習を併用したMIPDのための新しい3つのアプローチを提案する。
これらのアプローチは、致命的グレード4と治療下グレード0のニュートロピーの発生を著しく減少させる可能性がある。
論文 参考訳(メタデータ) (2020-06-01T16:38:27Z) - Localized Debiased Machine Learning: Efficient Inference on Quantile
Treatment Effects and Beyond [69.83813153444115]
因果推論における(局所)量子化処理効果((L)QTE)の効率的な推定式を検討する。
Debiased Machine Learning (DML)は、高次元のニュアンスを推定するデータ分割手法である。
本稿では、この負担のかかるステップを避けるために、局所的脱バイアス機械学習(LDML)を提案する。
論文 参考訳(メタデータ) (2019-12-30T14:42:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。