Data Processing for the OpenGPT-X Model Family
- URL: http://arxiv.org/abs/2410.08800v1
- Date: Fri, 11 Oct 2024 13:34:24 GMT
- Title: Data Processing for the OpenGPT-X Model Family
- Authors: Nicolo' Brandizzi, Hammam Abdelwahab, Anirban Bhowmick, Lennard Helmer, Benny Jörg Stein, Pavel Denisov, Qasid Saleem, Michael Fromm, Mehdi Ali, Richard Rutmann, Farzad Naderi, Mohamad Saif Agy, Alexander Schwirjow, Fabian Küch, Luzian Hahn, Malte Ostendorff, Pedro Ortiz Suarez, Georg Rehm, Dennis Wegener, Nicolas Flores-Herr, Joachim Köhler, Johannes Leveling,
- Abstract summary: This paper presents a comprehensive overview of the data preparation pipeline developed for the OpenGPT-X project.
The project goal is to create open and high-performance multilingual large language models (LLMs)
We explain all data processing steps, starting with the data selection and requirement definition to the preparation of the final datasets for model training.
- Score: 32.8178473342263
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a comprehensive overview of the data preparation pipeline developed for the OpenGPT-X project, a large-scale initiative aimed at creating open and high-performance multilingual large language models (LLMs). The project goal is to deliver models that cover all major European languages, with a particular focus on real-world applications within the European Union. We explain all data processing steps, starting with the data selection and requirement definition to the preparation of the final datasets for model training. We distinguish between curated data and web data, as each of these categories is handled by distinct pipelines, with curated data undergoing minimal filtering and web data requiring extensive filtering and deduplication. This distinction guided the development of specialized algorithmic solutions for both pipelines. In addition to describing the processing methodologies, we provide an in-depth analysis of the datasets, increasing transparency and alignment with European data regulations. Finally, we share key insights and challenges faced during the project, offering recommendations for future endeavors in large-scale multilingual data preparation for LLMs.
Related papers
- A Survey on Data Synthesis and Augmentation for Large Language Models [35.59526251210408]
This paper reviews and summarizes data generation techniques throughout the lifecycle of Large Language Models.
We discuss the current constraints faced by these methods and investigate potential pathways for future development and research.
arXiv Detail & Related papers (2024-10-16T16:12:39Z) - Enabling Advanced Land Cover Analytics: An Integrated Data Extraction Pipeline for Predictive Modeling with the Dynamic World Dataset [1.3757956340051605]
We present a flexible and efficient end to end pipeline for working with the Dynamic World dataset.
This includes a pre-processing and representation framework which tackles noise removal, efficient extraction of large amounts of data, and re-representation of LULC data.
To demonstrate the power of our pipeline, we use it to extract data for an urbanization prediction problem and build a suite of machine learning models with excellent performance.
arXiv Detail & Related papers (2024-10-11T16:13:01Z) - Data Proportion Detection for Optimized Data Management for Large Language Models [32.62631669919273]
We introduce a new topic, textitdata proportion detection, which enables the automatic estimation of pre-training data proportions.
We provide rigorous theoretical proofs, practical algorithms, and preliminary experimental results for data proportion detection.
arXiv Detail & Related papers (2024-09-26T04:30:32Z) - Building and better understanding vision-language models: insights and future directions [8.230565679484128]
This paper provides a comprehensive overview of the current state-of-the-art approaches to vision-language models.
We then walk through the practical steps to build Idefics3-8B, a powerful VLM that significantly outperforms its predecessor Idefics2-8B.
We release the model along with the datasets created for its training.
arXiv Detail & Related papers (2024-08-22T17:47:24Z) - An Integrated Data Processing Framework for Pretraining Foundation Models [57.47845148721817]
Researchers and practitioners often have to manually curate datasets from difference sources.
We propose a data processing framework that integrates a Processing Module and an Analyzing Module.
The proposed framework is easy to use and highly flexible.
arXiv Detail & Related papers (2024-02-26T07:22:51Z) - Large Language Models for Data Annotation: A Survey [49.8318827245266]
The emergence of advanced Large Language Models (LLMs) presents an unprecedented opportunity to automate the complicated process of data annotation.
This survey includes an in-depth taxonomy of data types that LLMs can annotate, a review of learning strategies for models utilizing LLM-generated annotations, and a detailed discussion of the primary challenges and limitations associated with using LLMs for data annotation.
arXiv Detail & Related papers (2024-02-21T00:44:04Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - Capture the Flag: Uncovering Data Insights with Large Language Models [90.47038584812925]
This study explores the potential of using Large Language Models (LLMs) to automate the discovery of insights in data.
We propose a new evaluation methodology based on a "capture the flag" principle, measuring the ability of such models to recognize meaningful and pertinent information (flags) in a dataset.
arXiv Detail & Related papers (2023-12-21T14:20:06Z) - WanJuan: A Comprehensive Multimodal Dataset for Advancing English and
Chinese Large Models [69.96148259273065]
"Wan Juan" is a large-scale multimodal dataset composed of both Chinese and English data, collected from a wide range of web sources.
It was utilized in the training of InternLM, a model that demonstrated significant advantages in multi-dimensional evaluations when compared to models of a similar scale.
arXiv Detail & Related papers (2023-08-21T14:40:48Z) - Data-to-Value: An Evaluation-First Methodology for Natural Language
Projects [3.9378507882929554]
"Data to Value" (D2V) is a new methodology for big data text analytics projects.
It is guided by a detailed catalog of questions in order to avoid a disconnect between big data text analytics project team and the topic.
arXiv Detail & Related papers (2022-01-19T17:04:52Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
Cross-lingual Summarization aims at producing a summary in the target language for an article in the source language.
We propose a solution based on mixed-lingual pre-training that leverages both cross-lingual tasks like translation and monolingual tasks like masked language models.
Our model achieves an improvement of 2.82 (English to Chinese) and 1.15 (Chinese to English) ROUGE-1 scores over state-of-the-art results.
arXiv Detail & Related papers (2020-10-18T00:21:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.