Data Proportion Detection for Optimized Data Management for Large Language Models
- URL: http://arxiv.org/abs/2409.17527v1
- Date: Thu, 26 Sep 2024 04:30:32 GMT
- Title: Data Proportion Detection for Optimized Data Management for Large Language Models
- Authors: Hao Liang, Keshi Zhao, Yajie Yang, Bin Cui, Guosheng Dong, Zenan Zhou, Wentao Zhang,
- Abstract summary: We introduce a new topic, textitdata proportion detection, which enables the automatic estimation of pre-training data proportions.
We provide rigorous theoretical proofs, practical algorithms, and preliminary experimental results for data proportion detection.
- Score: 32.62631669919273
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have demonstrated exceptional performance across a wide range of tasks and domains, with data preparation playing a critical role in achieving these results. Pre-training data typically combines information from multiple domains. To maximize performance when integrating data from various domains, determining the optimal data proportion is essential. However, state-of-the-art (SOTA) LLMs rarely disclose details about their pre-training data, making it difficult for researchers to identify ideal data proportions. In this paper, we introduce a new topic, \textit{data proportion detection}, which enables the automatic estimation of pre-training data proportions by analyzing the generated outputs of LLMs. We provide rigorous theoretical proofs, practical algorithms, and preliminary experimental results for data proportion detection. Based on these findings, we offer valuable insights into the challenges and future directions for effective data proportion detection and data management.
Related papers
- A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
Real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance.
Data selection has shown promise in identifying the most representative samples from the entire dataset.
We propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection.
arXiv Detail & Related papers (2024-10-15T03:00:58Z) - CMDBench: A Benchmark for Coarse-to-fine Multimodal Data Discovery in Compound AI Systems [10.71630696651595]
Compound AI systems (CASs) that employ LLMs as agents to accomplish knowledge-intensive tasks have garnered significant interest within database and AI communities.
silos of multimodal data sources make it difficult to identify appropriate data sources for accomplishing the task at hand.
We propose CMDBench, a benchmark modeling the complexity of enterprise data platforms.
arXiv Detail & Related papers (2024-06-02T01:10:41Z) - SHED: Shapley-Based Automated Dataset Refinement for Instruction Fine-Tuning [16.307467144690683]
Large Language Models can achieve desirable performance with only a small amount of high-quality data.
Identifying high-quality data from vast datasets to curate small yet effective datasets has emerged as a critical challenge.
We introduce SHED, an automated dataset refinement framework based on Shapley value for instruction fine-tuning.
arXiv Detail & Related papers (2024-04-23T04:56:48Z) - How to Train Data-Efficient LLMs [56.41105687693619]
We study data-efficient approaches for pre-training language models (LLMs)
We find that Ask-LLM and Density sampling are the best methods in their respective categories.
In our comparison of 19 samplers, involving hundreds of evaluation tasks and pre-training runs, we find that Ask-LLM and Density are the best methods in their respective categories.
arXiv Detail & Related papers (2024-02-15T02:27:57Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - Data Management For Training Large Language Models: A Survey [64.18200694790787]
Data plays a fundamental role in training Large Language Models (LLMs)
This survey aims to provide a comprehensive overview of current research in data management within both the pretraining and supervised fine-tuning stages of LLMs.
arXiv Detail & Related papers (2023-12-04T07:42:16Z) - STAR: Boosting Low-Resource Information Extraction by Structure-to-Text
Data Generation with Large Language Models [56.27786433792638]
STAR is a data generation method that leverages Large Language Models (LLMs) to synthesize data instances.
We design fine-grained step-by-step instructions to obtain the initial data instances.
Our experiments show that the data generated by STAR significantly improve the performance of low-resource event extraction and relation extraction tasks.
arXiv Detail & Related papers (2023-05-24T12:15:19Z) - Quality Not Quantity: On the Interaction between Dataset Design and
Robustness of CLIP [43.7219097444333]
We introduce a testbed of six publicly available data sources to investigate how pre-training distributions induce robustness in CLIP.
We find that the performance of the pre-training data varies substantially across distribution shifts.
We find that combining multiple sources does not necessarily yield better models, but rather dilutes the robustness of the best individual data source.
arXiv Detail & Related papers (2022-08-10T18:24:23Z) - Improved Fine-tuning by Leveraging Pre-training Data: Theory and
Practice [52.11183787786718]
Fine-tuning a pre-trained model on the target data is widely used in many deep learning applications.
Recent studies have empirically shown that training from scratch has the final performance that is no worse than this pre-training strategy.
We propose a novel selection strategy to select a subset from pre-training data to help improve the generalization on the target task.
arXiv Detail & Related papers (2021-11-24T06:18:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.