論文の概要: A physics-guided neural network for flooding area detection using SAR imagery and local river gauge observations
- arxiv url: http://arxiv.org/abs/2410.08837v1
- Date: Fri, 11 Oct 2024 14:13:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 21:45:38.117035
- Title: A physics-guided neural network for flooding area detection using SAR imagery and local river gauge observations
- Title(参考訳): SAR画像と局所河川ゲージ観測を用いた物理誘導型洪水地域検出ニューラルネットワーク
- Authors: Monika Gierszewska, Tomasz Berezowski,
- Abstract要約: 本研究では,洪水領域検出のための物理誘導型ニューラルネットワークを提案する。
提案手法は,インプットデータとして,センチネル1の時系列画像と,各画像に割り当てられた河川の水位を推定する。
提案手法の有効性を,デジタル地形モデルと光学衛星画像から得られた参照水マップと比較することにより,5つの研究領域で評価した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The flooding extent area in a river valley is related to river gauge observations. The higher the water elevation, the larger the flooding area. Due to synthetic aperture radar\textquoteright s (SAR) capabilities to penetrate through clouds, radar images have been commonly used to estimate flooding extent area with various methods, from simple thresholding to deep learning models. In this study, we propose a physics-guided neural network for flooding area detection. Our approach takes as input data the Sentinel 1 time-series images and the water elevations in the river assigned to each image. We apply the Pearson correlation coefficient between the predicted sum of water extent areas and the local water level observations of river water elevations as the loss function. The effectiveness of our method is evaluated in five different study areas by comparing the predicted water maps with reference water maps obtained from digital terrain models and optical satellite images. The highest Intersection over Union (IoU) score achieved by our models was 0.89 for the water class and 0.96 for the non-water class. Additionally, we compared the results with other unsupervised methods. The proposed neural network provided a higher IoU than the other methods, especially for SAR images registered during low water elevation in the river.
- Abstract(参考訳): 川流域の洪水範囲は、川のゲージ観測と関連している。
水位が高くなればなるほど、洪水地域は大きくなる。
合成開口レーダ\textquoteright s (SAR) により、レーダー画像は、単純なしきい値から深層学習モデルまで、様々な方法で浸水範囲を推定するためによく用いられてきた。
本研究では,洪水領域検出のための物理誘導型ニューラルネットワークを提案する。
提案手法は,インプットデータとして,センチネル1の時系列画像と,各画像に割り当てられた河川の水位を推定する。
水深域の予測和と河川水位分布の局所水位観測とのピアソン相関係数を損失関数として適用した。
本手法の有効性を,デジタル地形モデルと光学衛星画像から得られた参照水マップと比較することにより,5つの研究領域で評価した。
IoUは非水系では0.89,非水系では0.96であった。
さらに、他の教師なし手法と比較した。
提案したニューラルネットワークは他の手法よりも高いIoUを提供し、特に河川の低水位時に登録されたSAR画像に対してである。
関連論文リスト
- TransGlow: Attention-augmented Transduction model based on Graph Neural
Networks for Water Flow Forecasting [4.915744683251151]
水量の水量予測は、水管理、洪水予測、洪水制御など様々な用途に有用である。
本稿では,GCRN(Graph Convolution Recurrent Neural Network)エンコーダデコーダの隠れ状態を増大させる時間予測モデルを提案する。
本稿では,河川,河川,湖上のカナダステーションのネットワークから,新たな水流のベンチマークデータセットを提案する。
論文 参考訳(メタデータ) (2023-12-10T18:23:40Z) - Leveraging Citizen Science for Flood Extent Detection using Machine
Learning Benchmark Dataset [0.9029386959445269]
我々は、アメリカ本土とバングラデシュ内の約36,000平方キロメートルの地域をカバーする、既知の洪水イベントの間に、ラベル付きの水域範囲と浸水地域の範囲を作成します。
また、データセットをオープンソース化し、データセットに基づいたオープンコンペティションを開催して、コミュニティ生成モデルを使用した洪水範囲検出を迅速にプロトタイプ化しました。
データセットはSentinel-1C SARデータに基づく既存のデータセットに追加され、より堅牢な洪水範囲のモデリングにつながります。
論文 参考訳(メタデータ) (2023-11-15T18:49:29Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
本稿では、検出器フレンドリーな画像から、転送可能な事前知識を求める。
これは、検出器フレンドリー(DFUI)と水中画像の高度に劣化した領域が、特徴分布のギャップがあることを統計的に観察したものである。
高速かつパラメータの少ない本手法は変圧器型検出器よりも優れた性能を保っている。
論文 参考訳(メタデータ) (2023-08-24T12:32:46Z) - Estimation of River Water Surface Elevation Using UAV Photogrammetry and
Machine Learning [0.0]
無人航空機(UAV)は、地形の直視とデジタル表面モデル(DSM)を作成することができる。
この方法でマッピングされた水域のDSMは、水面歪みを明らかにし、水面標高(WSE)の正確な測定に光グラムデータを使用するのを防ぐ。
本稿では, コンボリューショナル・ニューラル・ネットワーク(CNN)を, フォトグラムのDSMと正光のWSE推定器として用いる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-05T08:20:46Z) - DeepAqua: Self-Supervised Semantic Segmentation of Wetland Surface Water
Extent with SAR Images using Knowledge Distillation [44.99833362998488]
トレーニングフェーズ中に手動アノテーションを不要にする自己教師型ディープラーニングモデルであるDeepAquaを提案する。
我々は、光とレーダーをベースとしたウォーターマスクが一致する場合を利用して、水面と植物の両方を検知する。
実験の結果,DeepAquaの精度は7%向上し,Intersection Over Unionが27%,F1が14%向上した。
論文 参考訳(メタデータ) (2023-05-02T18:06:21Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Unpaired Overwater Image Defogging Using Prior Map Guided CycleGAN [60.257791714663725]
オーバーウォーターシーンで画像をデフォグするための先行マップガイドサイクロン (PG-CycleGAN) を提案する。
提案手法は,最先端の教師付き,半教師付き,非教師付きデグジングアプローチより優れている。
論文 参考訳(メタデータ) (2022-12-23T03:00:28Z) - Underwater Image Restoration via Contrastive Learning and a Real-world
Dataset [59.35766392100753]
本稿では,教師なし画像から画像への翻訳フレームワークに基づく水中画像復元手法を提案する。
提案手法は, 生画像と復元画像の相互情報を最大化するために, コントラスト学習と生成敵ネットワークを利用した。
論文 参考訳(メタデータ) (2021-06-20T16:06:26Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
本稿では,ディープニューラルネットワークを用いた単眼画像とレーダ点の融合により,より正確な深度推定を実現する可能性を検討する。
レーダ測定で発生するノイズが,既存の融合法の適用を妨げている主要な理由の1つであることが判明した。
実験はnuScenesデータセット上で行われ、カメラ、レーダー、LiDARの記録を様々な場面と気象条件で記録する最初のデータセットの1つである。
論文 参考訳(メタデータ) (2020-09-30T19:01:33Z) - A Hybrid Deep Learning Model for Predictive Flood Warning and Situation
Awareness using Channel Network Sensors Data [0.965964228590342]
この調査ではテキサス州ハリス郡をテストベッドとし、3つの歴史的な洪水からチャネルセンサーのデータを得た。
このモデルは、2019年のヒューストンのイメルダ洪水を予測するためにテストされ、その結果は経験的な洪水とよく一致している。
論文 参考訳(メタデータ) (2020-06-15T17:25:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。