Public Transport Network Design for Equality of Accessibility via Message Passing Neural Networks and Reinforcement Learning
- URL: http://arxiv.org/abs/2410.08841v1
- Date: Fri, 11 Oct 2024 14:16:58 GMT
- Title: Public Transport Network Design for Equality of Accessibility via Message Passing Neural Networks and Reinforcement Learning
- Authors: Duo Wang, Maximilien Chau, Andrea Araldo,
- Abstract summary: We focus on Public Transport (PT) accessibility, i.e., the ease of reaching surrounding points of interest via PT.
We combine state-of-the-art Message Passing Neural Networks (MPNN) and Reinforcement Learning.
We show the efficacy of our method against metaheuristics in a use case representing in simplified terms the city of Montreal.
- Score: 4.6289929100615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Designing Public Transport (PT) networks able to satisfy mobility needs of people is essential to reduce the number of individual vehicles on the road, and thus pollution and congestion. Urban sustainability is thus tightly coupled to an efficient PT. Current approaches on Transport Network Design (TND) generally aim to optimize generalized cost, i.e., a unique number including operator and users' costs. Since we intend quality of PT as the capability of satisfying mobility needs, we focus instead on PT accessibility, i.e., the ease of reaching surrounding points of interest via PT. PT accessibility is generally unequally distributed in urban regions: suburbs generally suffer from poor PT accessibility, which condemns residents therein to be dependent on their private cars. We thus tackle the problem of designing bus lines so as to minimize the inequality in the geographical distribution of accessibility. We combine state-of-the-art Message Passing Neural Networks (MPNN) and Reinforcement Learning. We show the efficacy of our method against metaheuristics (classically used in TND) in a use case representing in simplified terms the city of Montreal.
Related papers
- GPT-Augmented Reinforcement Learning with Intelligent Control for Vehicle Dispatching [82.19172267487998]
GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.
This paper introduces GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.
arXiv Detail & Related papers (2024-08-19T08:23:38Z) - MetaUrban: An Embodied AI Simulation Platform for Urban Micromobility [52.0930915607703]
Recent advances in Robotics and Embodied AI make public urban spaces no longer exclusive to humans.
Micromobility enabled by AI for short-distance travel in public urban spaces plays a crucial component in the future transportation system.
We present MetaUrban, a compositional simulation platform for the AI-driven urban micromobility research.
arXiv Detail & Related papers (2024-07-11T17:56:49Z) - Forecasting and Mitigating Disruptions in Public Bus Transit Services [7.948662269574215]
Public transportation systems often suffer from unexpected fluctuations in demand and disruptions, such as mechanical failures and medical emergencies.
These fluctuations and disruptions lead to delays and overcrowding, which are detrimental to the passengers' experience and to the overall performance of the transit service.
To proactively mitigate such events, many transit agencies station substitute (reserve) vehicles throughout their service areas, which they can dispatch to augment or replace vehicles on routes that suffer overcrowding or disruption.
However, determining the optimal locations where substitute vehicles should be stationed is a challenging problem due to the randomness of disruptions and due to the nature of selecting locations across a city.
arXiv Detail & Related papers (2024-03-06T22:06:21Z) - Fair collaborative vehicle routing: A deep multi-agent reinforcement
learning approach [49.00137468773683]
Collaborative vehicle routing occurs when carriers collaborate through sharing their transportation requests and performing transportation requests on behalf of each other.
Traditional game theoretic solution concepts are expensive to calculate as the characteristic function scales exponentially with the number of agents.
We propose to model this problem as a coalitional bargaining game solved using deep multi-agent reinforcement learning.
arXiv Detail & Related papers (2023-10-26T15:42:29Z) - AccEq-DRT: Planning Demand-Responsive Transit to reduce inequality of
accessibility [7.615022055373833]
We focus on accessibility provided by Public Transit (PT)
There is an evident inequality in the distribution of accessibility between city centers or close to main transportation corridors and suburbs.
We propose a DRT planning strategy, which we call AccEq-DRT, aimed at reducing accessibility inequality.
arXiv Detail & Related papers (2023-10-06T16:13:28Z) - Towards Understanding the Benefits and Challenges of Demand Responsive Public Transit- A Case Study in the City of Charlotte, NC [3.678540247562326]
This study investigates the challenges faced by transit-dependent populations in Charlotte, NC.
Our research initially evaluates critical issues such as extended wait times, unreliable schedules, and limited accessibility.
This evaluation included an analysis of the existing Charlotte Area Transit System (CATS) mobile applications and the exploration of user acceptance for a proposed smart, on-demand transit technology.
arXiv Detail & Related papers (2023-04-09T03:10:36Z) - Designing Equitable Transit Networks [2.2720742607784183]
We present a formulation for transit network design that considers different notions of equity and welfare explicitly.
We study the interaction between network design and various concepts of equity and present trade-offs and results based on real-world data from a large metropolitan area in the United States of America.
arXiv Detail & Related papers (2022-12-22T19:30:53Z) - On the Role of Multi-Objective Optimization to the Transit Network
Design Problem [0.7734726150561088]
This work shows that single and multi objective stances can be synergistically combined to better answer the transit network design problem (TNDP)
As a guiding case study, the solution is applied to the multimodal public transport network in the city of Lisbon, Portugal.
The proposed TNDP optimization proved to improve results, with reductions in objective functions of up to 28.3%.
arXiv Detail & Related papers (2022-01-27T16:22:07Z) - Flatland Competition 2020: MAPF and MARL for Efficient Train
Coordination on a Grid World [49.80905654161763]
The Flatland competition aimed at finding novel approaches to solve the vehicle re-scheduling problem (VRSP)
The VRSP is concerned with scheduling trips in traffic networks and the re-scheduling of vehicles when disruptions occur.
The ever-growing complexity of modern railway networks makes dynamic real-time scheduling of traffic virtually impossible.
arXiv Detail & Related papers (2021-03-30T17:13:29Z) - End-to-end Interpretable Neural Motion Planner [78.69295676456085]
We propose a neural motion planner (NMP) for learning to drive autonomously in complex urban scenarios.
We design a holistic model that takes as input raw LIDAR data and a HD map and produces interpretable intermediate representations.
We demonstrate the effectiveness of our approach in real-world driving data captured in several cities in North America.
arXiv Detail & Related papers (2021-01-17T14:16:12Z) - Smart Urban Mobility: When Mobility Systems Meet Smart Data [55.456196356335745]
Cities around the world are expanding dramatically, with urban population growth reaching nearly 2.5 billion people in urban areas and road traffic growth exceeding 1.2 billion cars by 2050.
The economic contribution of the transport sector represents 5% of the GDP in Europe and costs an average of US $482.05 billion in the U.S.
arXiv Detail & Related papers (2020-05-09T13:53:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.