論文の概要: Can we hop in general? A discussion of benchmark selection and design using the Hopper environment
- arxiv url: http://arxiv.org/abs/2410.08870v2
- Date: Mon, 14 Oct 2024 13:28:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 21:26:05.869673
- Title: Can we hop in general? A discussion of benchmark selection and design using the Hopper environment
- Title(参考訳): 一般的なホップは可能か?ホッパー環境を用いたベンチマーク選択と設計の議論
- Authors: Claas A Voelcker, Marcel Hussing, Eric Eaton,
- Abstract要約: 我々は、強化学習におけるベンチマークは科学の分野として扱う必要があると論じている。
ケーススタディでは、標準的なベンチマークスイートの選択が、アルゴリズムのパフォーマンスの判断方法を大きく変える可能性があることを示しています。
- 参考スコア(独自算出の注目度): 12.18012293738896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Empirical, benchmark-driven testing is a fundamental paradigm in the current RL community. While using off-the-shelf benchmarks in reinforcement learning (RL) research is a common practice, this choice is rarely discussed. Benchmark choices are often done based on intuitive ideas like "legged robots" or "visual observations". In this paper, we argue that benchmarking in RL needs to be treated as a scientific discipline itself. To illustrate our point, we present a case study on different variants of the Hopper environment to show that the selection of standard benchmarking suites can drastically change how we judge performance of algorithms. The field does not have a cohesive notion of what the different Hopper environments are representative - they do not even seem to be representative of each other. Our experimental results suggests a larger issue in the deep RL literature: benchmark choices are neither commonly justified, nor does there exist a language that could be used to justify the selection of certain environments. This paper concludes with a discussion of the requirements for proper discussion and evaluations of benchmarks and recommends steps to start a dialogue towards this goal.
- Abstract(参考訳): 経験的、ベンチマーク駆動テストは、現在のRLコミュニティの基本的なパラダイムです。
強化学習(RL)研究における既成ベンチマークの使用は一般的な慣行であるが、この選択はめったに議論されない。
ベンチマークの選択は、しばしば「足のロボット」や「視覚観察」といった直感的なアイデアに基づいて行われる。
本稿では,RLのベンチマークを科学分野として扱う必要があると論じる。
本論では,標準ベンチマークスイートの選択がアルゴリズムの性能の判断方法を大きく変えることができることを示すため,Hopper環境の異なる変種に関するケーススタディを示す。
この分野は、異なるホッパー環境が何を代表しているかという結束的な概念を持っていない。
ベンチマークの選択は一般的には正当化されないし、特定の環境の選択を正当化するのに使える言語も存在しない。
本稿では、ベンチマークの適切な議論と評価の要件について議論し、この目標に向けて対話を開始するためのステップを推奨する。
関連論文リスト
- OGBench: Benchmarking Offline Goal-Conditioned RL [72.00291801676684]
オフライン目標条件強化学習(GCRL)は強化学習における大きな問題である。
オフラインゴール条件RLにおけるアルゴリズム研究のための,新しい高品質なベンチマークであるOGBenchを提案する。
論文 参考訳(メタデータ) (2024-10-26T06:06:08Z) - Do Text-to-Vis Benchmarks Test Real Use of Visualisations? [11.442971909006657]
本稿では,ベンチマークデータセットと公開リポジトリのコードを比較した実証的研究を通じて,ベンチマークが実世界の利用を反映しているかどうかを考察する。
その結果,実世界の実例と同一のチャート型,属性,行動の分布を評価できないという,大きなギャップがあることが判明した。
1つのデータセットは代表的であるが、実用的なエンドツーエンドベンチマークになるには広範囲な修正が必要である。
これは、ユーザの視覚的ニーズに本当に対処するシステムの開発をサポートするために、新しいベンチマークが必要であることを示している。
論文 参考訳(メタデータ) (2024-07-29T06:13:28Z) - Do These LLM Benchmarks Agree? Fixing Benchmark Evaluation with BenchBench [15.565644819269803]
過度に見落とされた方法論的選択がベンチマークコンセンサステスト(BAT)の結果にどのように影響するかを示す。
我々は、BAT用のピソンパッケージであるBenchBenchを紹介し、ベンチマークを仲間を使って評価するためのメタベンチマークであるBenchBench- Leaderboardをリリースする。
論文 参考訳(メタデータ) (2024-07-18T17:00:23Z) - The BiGGen Bench: A Principled Benchmark for Fine-grained Evaluation of Language Models with Language Models [94.31327813151208]
BiGGen Benchは、77のタスクにわたるLMの9つの異なる能力を徹底的に評価するために設計された、原則化された世代ベンチマークである。
BiGGen Benchの重要な特徴は、インスタンス固有の評価基準の使用であり、人間の評価のニュアンスな識別を忠実に反映している。
論文 参考訳(メタデータ) (2024-06-09T12:30:30Z) - When Benchmarks are Targets: Revealing the Sensitivity of Large Language Model Leaderboards [9.751405901938895]
既存のリーダーボードでは,LLMの相対的な性能は細部まで非常に敏感であることが示されている。
一般的なマルチチョイス質問ベンチマーク(MMLUなど)では、選択の順序や解答の選択方法の変更など、ベンチマークに対する小さな摂動が最大8位までランクが変更されることが示されている。
論文 参考訳(メタデータ) (2024-02-01T19:12:25Z) - InfiMM-Eval: Complex Open-Ended Reasoning Evaluation For Multi-Modal
Large Language Models [50.03163753638256]
MLLM(Multi-modal Large Language Models)は人工知能の分野で注目されている。
本ベンチマークは, 帰納的, 帰納的, 類推的推論の3つの主要な推論カテゴリから構成される。
我々は,この厳密に開発されたオープンエンド多段階精巧な推論ベンチマークを用いて,代表MLLMの選択を評価する。
論文 参考訳(メタデータ) (2023-11-20T07:06:31Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
本稿では,これらの課題に対処するために,13Bパラメータを持つ生成判断器Auto-Jを提案する。
我々のモデルは,大規模な実環境シナリオ下でのユーザクエリとLLM生成応答に基づいて訓練されている。
実験的に、Auto-Jはオープンソースモデルとクローズドソースモデルの両方を含む、強力なライバルのシリーズを上回っている。
論文 参考訳(メタデータ) (2023-10-09T07:27:15Z) - Benchopt: Reproducible, efficient and collaborative optimization
benchmarks [67.29240500171532]
Benchoptは、機械学習で最適化ベンチマークを自動化、再生、公開するためのフレームワークである。
Benchoptは実験を実行、共有、拡張するための既製のツールを提供することで、コミュニティのベンチマークを簡単にする。
論文 参考訳(メタデータ) (2022-06-27T16:19:24Z) - A Theoretically Grounded Benchmark for Evaluating Machine Commonsense [6.725087407394836]
理論的に答えるコモンセンス推論(TG-CSR)は差別的な質問応答に基づいているが、コモンセンスの多様な側面を評価するために設計された。
TG-CSRは、ゴードンとホッブズによるコモンセンスの実行可能な理論として最初に提案されたコモンセンス圏のサブセットに基づいている。
予備的な結果は、このベンチマークが差別的なCSR質問応答タスクのために設計された高度な言語表現モデルに対してさえ挑戦的であることを示唆している。
論文 参考訳(メタデータ) (2022-03-23T04:06:01Z) - B-Pref: Benchmarking Preference-Based Reinforcement Learning [84.41494283081326]
我々は、好みベースのRL用に特別に設計されたベンチマークであるB-Prefを紹介する。
このようなベンチマークにおける重要な課題は、候補アルゴリズムをすばやく評価する機能を提供することだ。
B-Prefは、幅広い不合理性を持つ教師をシミュレートすることでこれを緩和する。
論文 参考訳(メタデータ) (2021-11-04T17:32:06Z) - Do Fine-tuned Commonsense Language Models Really Generalize? [8.591839265985412]
厳密な科学的研究を設計・実施することで、一般化問題を詳細に研究する。
実験装置の適度な変更があっても、微調整されたコモンセンス言語モデルがまだうまく一般化していないという明確な証拠が得られます。
論文 参考訳(メタデータ) (2020-11-18T08:52:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。