Online design of dynamic networks
- URL: http://arxiv.org/abs/2410.08875v1
- Date: Fri, 11 Oct 2024 14:50:31 GMT
- Title: Online design of dynamic networks
- Authors: Duo Wang, Andrea Araldo, Mounim El Yacoubi,
- Abstract summary: This paper introduces a method for the online design of dynamic networks.
We tackle this online design problem with a rolling horizon based on Monte Carlo Tree Search.
The potential of online network design is showcased for the design of a futuristic public transport network.
- Score: 4.6289929100615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Designing a network (e.g., a telecommunication or transport network) is mainly done offline, in a planning phase, prior to the operation of the network. On the other hand, a massive effort has been devoted to characterizing dynamic networks, i.e., those that evolve over time. The novelty of this paper is that we introduce a method for the online design of dynamic networks. The need to do so emerges when a network needs to operate in a dynamic and stochastic environment. In this case, one may wish to build a network over time, on the fly, in order to react to the changes of the environment and to keep certain performance targets. We tackle this online design problem with a rolling horizon optimization based on Monte Carlo Tree Search. The potential of online network design is showcased for the design of a futuristic dynamic public transport network, where bus lines are constructed on the fly to better adapt to a stochastic user demand. In such a scenario, we compare our results with state-of-the-art dynamic vehicle routing problem (VRP) resolution methods, simulating requests from a New York City taxi dataset. Differently from classic VRP methods, that extend vehicle trajectories in isolation, our method enables us to build a structured network of line buses, where complex user journeys are possible, thus increasing system performance.
Related papers
- ST-RetNet: A Long-term Spatial-Temporal Traffic Flow Prediction Method [1.8531577178922987]
We propose an innovative model called Spatial-Temporal Retentive Network (ST-RetNet)
At the spatial scale, we integrate a topological graph structure into Spatial Retentive Network(S-RetNet), utilizing an adaptive adjacency matrix to extract dynamic spatial features of the road network.
At the temporal scale, we propose the Temporal Retentive Network(T-RetNet), which has been demonstrated to excel in capturing long-term dependencies in traffic flow patterns.
arXiv Detail & Related papers (2024-07-13T03:52:32Z) - Image Captioning via Dynamic Path Customization [100.15412641586525]
We propose a novel Dynamic Transformer Network (DTNet) for image captioning, which dynamically assigns customized paths to different samples, leading to discriminative yet accurate captions.
To validate the effectiveness of our proposed DTNet, we conduct extensive experiments on the MS-COCO dataset and achieve new state-of-the-art performance.
arXiv Detail & Related papers (2024-06-01T07:23:21Z) - Interference Cancellation GAN Framework for Dynamic Channels [74.22393885274728]
We introduce an online training framework that can adapt to any changes in the channel.
Our framework significantly outperforms recent neural network models on highly dynamic channels.
arXiv Detail & Related papers (2022-08-17T02:01:18Z) - The Braess Paradox in Dynamic Traffic [3.9989504310282977]
The Braess's Paradox (BP) is the observation that adding one or more roads to the existing road network will counter-intuitively increase traffic congestion and slow down the overall traffic flow.
This article proposes a dynamic traffic network model and empirically validates the existence of the BP under dynamic traffic.
arXiv Detail & Related papers (2022-03-07T21:27:24Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Optimal transport in multilayer networks [68.8204255655161]
We propose a model where optimal flows on different layers contribute differently to the total cost to be minimized.
As an application, we consider transportation networks, where each layer is associated to a different transportation system.
We show an example of this result on the real 2-layer network of the city of Bordeaux with bus and tram, where in certain regimes the presence of the tram network significantly unburdens the traffic on the road network.
arXiv Detail & Related papers (2021-06-14T07:33:09Z) - Network Embedding via Deep Prediction Model [25.727377978617465]
This paper proposes a network embedding framework to capture the transfer behaviors on structured networks via deep prediction models.
A network structure embedding layer is added into conventional deep prediction models, including Long Short-Term Memory Network and Recurrent Neural Network.
Experimental studies are conducted on various datasets including social networks, citation networks, biomedical network, collaboration network and language network.
arXiv Detail & Related papers (2021-04-27T16:56:00Z) - Learning dynamic and hierarchical traffic spatiotemporal features with
Transformer [4.506591024152763]
This paper proposes a novel model, Traffic Transformer, for spatial-temporal graph modeling and long-term traffic forecasting.
Transformer is the most popular framework in Natural Language Processing (NLP)
analyzing the attention weight matrixes can find the influential part of road networks, allowing us to learn the traffic networks better.
arXiv Detail & Related papers (2021-04-12T02:29:58Z) - Spatio-Temporal Hybrid Graph Convolutional Network for Traffic
Forecasting in Telecommunication Networks [8.753378989033322]
We study the characteristics of cellular network traffic and shed light on the dependency complexities based on data collected from a densely populated metropolis area.
Specifically, we observe that the traffic shows both dynamic and static spatial dependencies as well as diverse cyclic temporal patterns.
We propose an effective deep-learning-based approach, namely, Spatio-Temporal Hybrid Graph Convolutional Network (STHGCN)
arXiv Detail & Related papers (2020-09-17T08:54:16Z) - Multi-Agent Routing Value Iteration Network [88.38796921838203]
We propose a graph neural network based model that is able to perform multi-agent routing based on learned value in a sparsely connected graph.
We show that our model trained with only two agents on graphs with a maximum of 25 nodes can easily generalize to situations with more agents and/or nodes.
arXiv Detail & Related papers (2020-07-09T22:16:45Z) - Learning Dynamic Routing for Semantic Segmentation [86.56049245100084]
This paper studies a conceptually new method to alleviate the scale variance in semantic representation, named dynamic routing.
The proposed framework generates data-dependent routes, adapting to the scale distribution of each image.
To this end, a differentiable gating function, called soft conditional gate, is proposed to select scale transform paths on the fly.
arXiv Detail & Related papers (2020-03-23T17:22:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.