Towards Multilingual LLM Evaluation for European Languages
- URL: http://arxiv.org/abs/2410.08928v2
- Date: Thu, 17 Oct 2024 17:58:53 GMT
- Title: Towards Multilingual LLM Evaluation for European Languages
- Authors: Klaudia Thellmann, Bernhard Stadler, Michael Fromm, Jasper Schulze Buschhoff, Alex Jude, Fabio Barth, Johannes Leveling, Nicolas Flores-Herr, Joachim Köhler, René Jäkel, Mehdi Ali,
- Abstract summary: We introduce a multilingual evaluation approach tailored for European languages.
We employ translated versions of five widely-used benchmarks to assess the capabilities of 40 LLMs across 21 European languages.
- Score: 3.3917876450975317
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of Large Language Models (LLMs) has revolutionized natural language processing across numerous languages and tasks. However, evaluating LLM performance in a consistent and meaningful way across multiple European languages remains challenging, especially due to the scarcity of language-parallel multilingual benchmarks. We introduce a multilingual evaluation approach tailored for European languages. We employ translated versions of five widely-used benchmarks to assess the capabilities of 40 LLMs across 21 European languages. Our contributions include examining the effectiveness of translated benchmarks, assessing the impact of different translation services, and offering a multilingual evaluation framework for LLMs that includes newly created datasets: EU20-MMLU, EU20-HellaSwag, EU20-ARC, EU20-TruthfulQA, and EU20-GSM8K. The benchmarks and results are made publicly available to encourage further research in multilingual LLM evaluation.
Related papers
- Multi-IF: Benchmarking LLMs on Multi-Turn and Multilingual Instructions Following [51.18383180774354]
We introduce Multi-IF, a new benchmark designed to assess Large Language Models' proficiency in following multi-turn and multilingual instructions.
Our evaluation of 14 state-of-the-art LLMs on Multi-IF reveals that it presents a significantly more challenging task than existing benchmarks.
languages with non-Latin scripts (Hindi, Russian, and Chinese) generally exhibit higher error rates, suggesting potential limitations in the models' multilingual capabilities.
arXiv Detail & Related papers (2024-10-21T00:59:47Z) - Cross-Lingual Auto Evaluation for Assessing Multilingual LLMs [36.30321941154582]
Hercule is a cross-lingual evaluation model that learns to assign scores to responses based on easily available reference answers in English.
This study is the first comprehensive examination of cross-lingual evaluation using LLMs, presenting a scalable and effective approach for multilingual assessment.
arXiv Detail & Related papers (2024-10-17T09:45:32Z) - Teuken-7B-Base & Teuken-7B-Instruct: Towards European LLMs [29.595342315049106]
We present two multilingual LLMs designed to embrace Europe's linguistic diversity by supporting all 24 official languages of the European Union.
We detail the models' development principles, i.e., data composition, tokenizer optimization, and training methodologies.
arXiv Detail & Related papers (2024-09-30T16:05:38Z) - EuroLLM: Multilingual Language Models for Europe [76.89545643715368]
We introduce the EuroLLM project, aimed at developing a suite of open-weight multilingual LLMs.
We outline the progress made to date, detailing our data collection and filtering process.
We report our performance on multilingual general benchmarks and machine translation.
arXiv Detail & Related papers (2024-09-24T16:51:36Z) - LLMs Beyond English: Scaling the Multilingual Capability of LLMs with Cross-Lingual Feedback [61.23008372927665]
We introduce xLLMs-100, which scales the multilingual capabilities of LLaMA and BLOOM to 100 languages.
We evaluate the multilingual understanding and generating capabilities of xLLMs-100 on five multilingual benchmarks.
arXiv Detail & Related papers (2024-06-03T20:25:12Z) - Quantifying Multilingual Performance of Large Language Models Across Languages [48.40607157158246]
Large Language Models (LLMs) perform better on high-resource languages like English, German, and French, while their capabilities in low-resource languages remain inadequate.
We propose the Language Ranker, an intrinsic metric designed to benchmark and rank languages based on LLM performance using internal representations.
Our analysis reveals that high-resource languages exhibit higher similarity scores with English, demonstrating superior performance, while low-resource languages show lower similarity scores.
arXiv Detail & Related papers (2024-04-17T16:53:16Z) - OMGEval: An Open Multilingual Generative Evaluation Benchmark for Large
Language Models [59.54423478596468]
We introduce OMGEval, the first Open-source Multilingual Generative test set that can assess the capability of LLMs in different languages.
For each language, OMGEval provides 804 open-ended questions, covering a wide range of important capabilities of LLMs.
Specifically, the current version of OMGEval includes 5 languages (i.e., Zh, Ru, Fr, Es, Ar)
arXiv Detail & Related papers (2024-02-21T04:42:41Z) - Are Large Language Model-based Evaluators the Solution to Scaling Up
Multilingual Evaluation? [20.476500441734427]
Large Language Models (LLMs) excel in various Natural Language Processing (NLP) tasks.
Their evaluation, particularly in languages beyond the top $20$, remains inadequate due to existing benchmarks and metrics limitations.
arXiv Detail & Related papers (2023-09-14T06:41:58Z) - XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating
Cross-lingual Generalization [128.37244072182506]
Cross-lingual TRansfer Evaluation of Multilinguals XTREME is a benchmark for evaluating the cross-lingual generalization capabilities of multilingual representations across 40 languages and 9 tasks.
We demonstrate that while models tested on English reach human performance on many tasks, there is still a sizable gap in the performance of cross-lingually transferred models.
arXiv Detail & Related papers (2020-03-24T19:09:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.