Meta-Transfer Learning Empowered Temporal Graph Networks for Cross-City Real Estate Appraisal
- URL: http://arxiv.org/abs/2410.08947v1
- Date: Fri, 11 Oct 2024 16:16:38 GMT
- Title: Meta-Transfer Learning Empowered Temporal Graph Networks for Cross-City Real Estate Appraisal
- Authors: Weijia Zhang, Jindong Han, Hao Liu, Wei Fan, Hao Wang, Hui Xiong,
- Abstract summary: Deep learning has shown great promise for real estate appraisal by harnessing substantial online transaction data from web platforms.
We propose Meta-Transfer Learning Empowered Temporal Graph Networks (MetaTransfer) to transfer valuable knowledge from multiple data-riches to the data-scarce city.
- Score: 28.752306064729474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real estate appraisal is important for a variety of endeavors such as real estate deals, investment analysis, and real property taxation. Recently, deep learning has shown great promise for real estate appraisal by harnessing substantial online transaction data from web platforms. Nonetheless, deep learning is data-hungry, and thus it may not be trivially applicable to enormous small cities with limited data. To this end, we propose Meta-Transfer Learning Empowered Temporal Graph Networks (MetaTransfer) to transfer valuable knowledge from multiple data-rich metropolises to the data-scarce city to improve valuation performance. Specifically, by modeling the ever-growing real estate transactions with associated residential communities as a temporal event heterogeneous graph, we first design an Event-Triggered Temporal Graph Network to model the irregular spatiotemporal correlations between evolving real estate transactions. Besides, we formulate the city-wide real estate appraisal as a multi-task dynamic graph link label prediction problem, where the valuation of each community in a city is regarded as an individual task. A Hypernetwork-Based Multi-Task Learning module is proposed to simultaneously facilitate intra-city knowledge sharing between multiple communities and task-specific parameters generation to accommodate the community-wise real estate price distribution. Furthermore, we propose a Tri-Level Optimization Based Meta- Learning framework to adaptively re-weight training transaction instances from multiple source cities to mitigate negative transfer, and thus improve the cross-city knowledge transfer effectiveness. Finally, extensive experiments based on five real-world datasets demonstrate the significant superiority of MetaTransfer compared with eleven baseline algorithms.
Related papers
- Multimodal Contrastive Learning of Urban Space Representations from POI Data [2.695321027513952]
CaLLiPer (Contrastive Language-Location Pre-training) is a representation learning model that embeds continuous urban spaces into vector representations.
We validate CaLLiPer's effectiveness by applying it to learning urban space representations in London, UK.
arXiv Detail & Related papers (2024-11-09T16:24:07Z) - MetaTrading: An Immersion-Aware Model Trading Framework for Vehicular Metaverse Services [94.61039892220037]
We present a novel immersion-aware model trading framework that incentivizes metaverse users (MUs) to contribute learning models for augmented reality (AR) services in the vehicular metaverse.
Considering dynamic network conditions and privacy concerns, we formulate the reward decisions of MSPs as a multi-agent Markov decision process.
Experimental results demonstrate that the proposed framework can effectively provide higher-value models for object detection and classification in AR services on real AR-related vehicle datasets.
arXiv Detail & Related papers (2024-10-25T16:20:46Z) - UrbanGPT: Spatio-Temporal Large Language Models [34.79169613947957]
We present the UrbanPT, which seamlessly integrates atemporal-temporal encoder with instruction-tuning paradigm.
We conduct extensive experiments on various public datasets, covering differenttemporal prediction tasks.
The results consistently demonstrate that our UrbanPT, with its carefully designed architecture, consistently outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-25T12:37:29Z) - Multi-Temporal Relationship Inference in Urban Areas [75.86026742632528]
Finding temporal relationships among locations can benefit a bunch of urban applications, such as dynamic offline advertising and smart public transport planning.
We propose a solution to Trial with a graph learning scheme, which includes a spatially evolving graph neural network (SEENet)
SEConv performs the intra-time aggregation and inter-time propagation to capture the multifaceted spatially evolving contexts from the view of location message passing.
SE-SSL designs time-aware self-supervised learning tasks in a global-local manner with additional evolving constraint to enhance the location representation learning and further handle the relationship sparsity.
arXiv Detail & Related papers (2023-06-15T07:48:32Z) - Semantic-Fused Multi-Granularity Cross-City Traffic Prediction [17.020546413647708]
We propose a Semantic-Fused Multi-Granularity Transfer Learning model to achieve knowledge transfer across cities with fused semantics at different granularities.
In detail, we design a semantic fusion module to fuse various semantics while conserving static spatial dependencies.
We conduct extensive experiments on six real-world datasets to verify the effectiveness of our STL model.
arXiv Detail & Related papers (2023-02-23T04:26:34Z) - Beyond Transfer Learning: Co-finetuning for Action Localisation [64.07196901012153]
We propose co-finetuning -- simultaneously training a single model on multiple upstream'' and downstream'' tasks.
We demonstrate that co-finetuning outperforms traditional transfer learning when using the same total amount of data.
We also show how we can easily extend our approach to multiple upstream'' datasets to further improve performance.
arXiv Detail & Related papers (2022-07-08T10:25:47Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
This paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD)
The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions.
Experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-30T03:37:50Z) - Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge
Transfer [58.6106391721944]
Cross-city knowledge has shown its promise, where the model learned from data-sufficient cities is leveraged to benefit the learning process of data-scarce cities.
We propose a model-agnostic few-shot learning framework for S-temporal graph called ST-GFSL.
We conduct comprehensive experiments on four traffic speed prediction benchmarks and the results demonstrate the effectiveness of ST-GFSL compared with state-of-the-art methods.
arXiv Detail & Related papers (2022-05-27T12:46:52Z) - MugRep: A Multi-Task Hierarchical Graph Representation Learning
Framework for Real Estate Appraisal [57.28018917017665]
We propose a Multi-Task Hierarchical Graph Representation Learning (MugRep) framework for accurate real estate appraisal.
By acquiring and integrating multi-trivial urban data, we first construct a rich feature set to comprehensively profile real estate from multiple perspectives.
An evolving real estate transaction graph and a corresponding event graph convolution module are proposed to incorporate asynchronouslytemporal dependencies among real estate transactions.
arXiv Detail & Related papers (2021-07-12T03:51:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.